Smart Thermal Grids – A Review

Author(s):  
Cristina Stănişteanu

Abstract In line with the Renewable Energy Directive (2009/28/EC), EU member states have intensified their efforts to increase the share of renewable energy in energy supply. Renewable energy sources will be a challenge for the current district heating concept, requiring system flexibility both in terms of heat supply and heat consumption. Besides, they are hard to accommodate in areas with high population density, as it is the case with many towns and cities. The municipalities will have to identify suitable locations, which in turn will lead to distributed heat supply. The requirement of the 2010/31/EU (EPBD) Directive that all new buildings will have to be nearzero energy buildings will result in buildings fitted with solar collectors; some buildings will produce more energy than they can use. To accommodate all these challenges, the scientists have come up with the new concept of Thermal Smart Grids. The renewable energy will then be shared with the whole district heating grid, and the network will also be used for heat storage when consumption is lower than production. Smart thermal grids are expected to be an integrated part of the future smart energy systems, integrated electricity, gas and thermal grids.

Author(s):  
Igor Tyukhov ◽  
Hegazy Rezk ◽  
Pandian Vasant

This chapter is devoted to main tendencies of optimization in photovoltaic (PV) engineering showing the main trends in modern energy transition - the changes in the composition (structure) of primary energy supply, the gradual shift from a traditional (mainly based on fossil fuels) energy to a new stage based on renewable energy systems from history to current stage and to future. The concrete examples (case studies) of optimization PV systems in different concepts of using from power electronics (particularly maximum power point tracking optimization) to implementing geographic information system (GIS) are considered. The chapter shows the gradual shifting optimization from specific quite narrow areas to the new stages of optimization of the very complex energy systems (actually smart grids) based on photovoltaics and also other renewable energy sources and GIS.


2020 ◽  
Vol 42 (4) ◽  
pp. 93-101
Author(s):  
T.A. Zheliezna ◽  
A.I. Bashtovyi

The aim of the work is to analyze possible ways of decarbonization of the EU heat supply sector. The task of the work is to identify the most promising areas and develop appropriate recommendations for Ukraine. The heat supply sector of the EU and Ukraine needs decarbonization, for which there is a big potential and different areas of implementation of relevant measures. In Europe, such a strategy is set out in the Roadmap for decarbonization of the EU heating sector until 2050, the main provisions of which are in line with objectives of the European Green Deal and the EU Strategy on Heating and Cooling. European experts have developed the concept of a smart energy system, which was taken into account when preparing the Roadmap for decarbonization of the EU heating sector until 2050. A number of carried out studies have shown that a smart energy system with 50% district heating integrated with other parts of the overall energy system is more efficient than a conventional energy system or the one based on decentralized heat supply, in terms of the possibility of using a high share of renewable energy. It is recommended for Ukraine to finalize the Concept of green energy transition until 2050, taking into account European approaches to the development of heating systems and the use of modern biofuels. It is also recommended to expand the current Concept of heat supply of Ukraine to the level of a strategy with an emphasis on the development of district heating systems, wide involvement of renewable energy sources and new technologies.


Author(s):  
I. Vakulenko ◽  
S. Kolosok

The article deals with the question of potential possibilities of using the smart grid concept in the heat power industry of Ukraine. The main obstacles that limit the development of smart grid in the heat and power complex of Ukraine are identified. Possible ways of development of the centralized system of heat supply of settlements on the basis of analogy with models of the district heat supply of the EU Member States are characterized. The factors identified as activation of which will facilitate the joint development of smart energy networks and the heat supply system in Ukraine. Key words: heat power, smart grids, models of district heating


2021 ◽  
Vol 250 ◽  
pp. 03001
Author(s):  
Natalya Danilina ◽  
Irina Reznikova

Renewable energy technologies (RET) that emerged as a result of the shift towards the renewable energy sources (RES) which aims at setting the path towards decentralized low-carbon energy systems intended for tackling global warming are becoming key elements of the smart grids of the future. Our paper applies the economic, social and technological model of the renewable energy platforms to the energy markets of the 21st century. The paper analyses the growing importance of the individual players (prosumers) on the energy market, especially when it comes to the renewable energy generation and trading. It shows that modern advanced information and communication technologies enabled the energy prosumers to trade their energy and information in two-way flows. All of these might be important for the transition towards sustainable economy and green technology.


2017 ◽  
pp. 1625-1679
Author(s):  
Igor Tyukhov ◽  
Hegazy Rezk ◽  
Pandian Vasant

This chapter is devoted to main tendencies of optimization in photovoltaic (PV) engineering showing the main trends in modern energy transition - the changes in the composition (structure) of primary energy supply, the gradual shift from a traditional (mainly based on fossil fuels) energy to a new stage based on renewable energy systems from history to current stage and to future. The concrete examples (case studies) of optimization PV systems in different concepts of using from power electronics (particularly maximum power point tracking optimization) to implementing geographic information system (GIS) are considered. The chapter shows the gradual shifting optimization from specific quite narrow areas to the new stages of optimization of the very complex energy systems (actually smart grids) based on photovoltaics and also other renewable energy sources and GIS.


2021 ◽  
Vol 323 ◽  
pp. 00006
Author(s):  
Kamil Chłosta ◽  
Wiesław Zima

The study verifies the potential application of renewable energy sources in a district heating substation. Different operating configurations of heat sources have been analysed, including solar collectors, PV panels and air source heat pump. Concepts of regulating the water parameters in a substation have been analysed. Moreover, the potential impact of a heat storage tank application has been calculated using a genetic algorithm to find optimal operating conditions in a district heating substation. The analysis is based on measured yearly data.


Author(s):  
M. A. Ancona ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
B. Di Pietra

In the next years energy grids are expected to become increasingly complex, due to the integration between traditional generators (operating with fossil fuels, especially natural gas), renewable energy production systems and storage devices. Furthermore, the increase of installed distributed generation systems is posing new issues for the existing grids. The integration involves both electric grids and thermal networks, such as district heating networks. In this scenario, it is fundamental to optimize the production mix and the operation of each system, in order to maximize the renewable energies exploitation, minimize the economic costs (in particular the fossil fuel consumption) and the environmental impact. The aim of this paper is the analysis of different solutions in terms of energy generation mix, in order to define the optimal configuration for a given network. With this purpose, in this study a real district heating network served by a combined heat and power unit and four boilers has been considered. The current mode of operation of the selected network has been simulated, in order to individuate eventual criticism and/or improvement possibility. On the basis of the obtained results, several scenarios have been developed by considering the addition of thermal or electric energy production systems from renewable energy sources and/or heat pumps. For a given scenario, a whole year of operation has been simulated with an in-house developed software, called EGO (Energy Grid Optimizer), based on genetic algorithms and able to define the load distribution of a number of energy systems operating into an energy grid, with the aim to minimize the total cost of the energy production. Further considered constraints have been the avoiding of thermal dissipations and the minimization of the electric energy sale to the national grid (in order to increase the grid stability). The carried out analysis has allowed to evaluate the yearly fuel consumption, the yearly electric energy sold to the network and the yearly electric energy purchased from the network, for each of the developed configurations. In this study the obtained results have been discussed in order to compare the proposed scenarios and to define an optimal solution, which enables to reduce the yearly operation costs of the production plant.


Sign in / Sign up

Export Citation Format

Share Document