Gas Turbine Fouling Offshore: Air Intake Filtration Optimization

Author(s):  
Stian Madsen ◽  
Jørn Watvedt ◽  
Lars E. Bakken

Optimized operation of gas turbines is discussed for a fleet of eleven LM2500PE engines at a Statoil North Sea offshore field in Norway. Three engines are generator drivers while eight engines are compressor drivers. Several of the compressor drive engines run at peak load (T5.4 control), hence production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence gas turbine uptime is critical for the field’s production and economy. The performance and operational experience with upgraded inlet air filter systems, as well as successful operation at longer maintenance intervals and higher average engine performance are described. For North Sea operation, a key property of the filter system is the ability to handle high humidity and high salt-content, typical of the harsh environment in these waters. The upgraded filter system analyzed in this paper is a 2-stage system (vane separator stage upstream of the high-efficiency filter stage), which is a simplified design versus the old traditional 3-stage systems (louvre upstream and vane separator downstream of the filter stage). These 2-stage systems rely on an efficient upstream vane separator to remove the vast majority of water from the airflow before it reaches the high-efficiency filters. The high-efficiency filters are specially designed to withstand moisture. The effectiveness and contribution of each component in the filtration system are described. Extensive testing of both new and used filter elements, of different filter grade and operated at different intervals, has been performed in a filter test rig facility onshore. Extensive testing of used filters has also been performed at the filter OEM, where filter efficiency is measured as well as destructive testing and analysis of the filter layers. The effect of an optimized air intake filter system for the subject engines, is longer operating intervals, higher power availability and lower engine deterioration. The operating intervals are now extended to six months (4,000 hours), from initially two months (1,500 hours, early 1990s) then four months (3,000 hours, mid 2000s). The HPC efficiency deterioration is reduced by some 3% related to intake filter system, of a total of over 6% in efficiency deterioration over each 6-month operating period.

Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Optimized operation of gas turbines is discussed for six LM2500PE engines at a Statoil North Sea offshore field. Three engines are generator drivers whilst three engines are compressor drivers. Two of the compressor drive engines are running at peak load (T5.4 control), hence the production rate is limited by the available power from these engines. All of the six engines discussed run continuously without redundancy, gas turbine uptime is therefore critical for the field’s production and economy. The performance and operational experience with upgraded inlet air filter systems and online water wash at high water-to-air ratio, as well as successful operation at longer intervals and higher average engine performance are described. For North Sea operation, a key property of the filter system is the ability to handle high humidity and high salt-content through the harsh environment in these waters. The upgraded filter systems analyzed in this paper is a 2-stage system (vane separator stage upstream of the high-efficiency-filter stage), which is a simplified design versus the old traditional 3-stage systems (louvre upstream and vane separator downstream of the filter stage). These 2-stage systems rely on an efficient upstream vane separator to remove the vast majority of water from the airflow before it reaches the high-efficiency filters. The high-efficiency filters are especially designed to withstand moisture. Deposit analysis from the downstream side of the filters has been performed. Extensive testing of both new and used filter elements, of different filter grade and operated at different intervals, has been performed on a filter test rig facility onshore. All six engines have historically been operated with 4-month intervals between maintenance stops. Online wash is performed daily between the maintenance stops at full load (i.e. normal operating load for the subject engine). As a result of successful development and pilot testing of new filters and optimized filter change intervals, as well as successful online water wash, the engine operating intervals are now extended to 6 months with very low deterioration rate. Understanding the gas turbine performance deterioration is of vital importance. Trending of its deviation from the engine baseline facilitates load-independent monitoring of the gas turbine’s condition. Instrument resolution and repeatability are key factors in order to get reasonable results from the performance analysis. Improvement of the package instrumentation has been implemented on three of the analyzed engines, for better performance monitoring. As a result of these analyses, a set of monitoring parameters is suggested for effective diagnostics of compressor degradation. Avenues for further research and development are proposed in order to further increase the understanding of the deterioration mechanisms and the gas turbine performance and response.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Optimized operation of gas turbines is discussed for a fleet of 11 GE LM2500PE engines at a Statoil North Sea offshore field in Norway. Three engines are generator drivers, and eight engines are compressor drivers. Several of the compressor drive engines are running at peak load (T5.4 control), hence, the production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence, the gas turbine uptime is critical for the field's production and economy. The performance and operational experience with online water wash at high water-to-air ratio (w.a.r.), as well as successful operation at longer maintenance intervals and higher average engine performance are described. The water-to-air ratio is significantly increased compared to the original equipment manufacturer (OEM) limit (OEM limit is 17 l/min which yields approximately 0.5% water-to-air ratio). Today the engines are operated at a water rate of 50 l/min (three times the OEM limit) which yields a 1.4% water-to-air ratio. Such a high water-to-air ratio has been proven to be the key parameter for obtaining good online water wash effectiveness. Possible downsides of high water-to-air ratio have been thoroughly studied.


Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Optimized operation of gas turbines is discussed for a fleet of eleven GE LM2500PE engines at a Statoil North Sea offshore field in Norway. Three engines are generator drivers and eight engines are compressor drivers. Several of the compressor drive engines are running at peak load (T5.4 control), hence production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence gas turbine uptime is critical for the field’s production and economy. The performance and operational experience with online water wash at high water-to-air ratio, as well as successful operation at longer maintenance intervals and higher average engine performance are described. This work is based on long-term operation with online washing, where operational data are collected and performance is analyzed over a 10-year period. Today, all engines are operated with 6-month intervals between maintenance stops, where offline crank wash is performed as well as other necessary maintenance and repairs. Online washing is performed daily between the maintenance stops at full load (i.e. normal operating load for the subject engine). To keep the engine as clean as possible and reduce degradation between maintenance stops, both an effective online water wash system and an effective air intake filter system are critical factors. The overall target is to maintain high engine performance, and extend the interval between maintenance stops through effective online washing. Water-to-air ratio is significantly increased compared to the OEM limit (OEM limit is 17 l/min which yields approx. 0.5% water-to-air ratio). Today the engines are operated at a water rate of 50 l/min (3 times the OEM limit) which yields a 1.4% water-to-air ratio. Such a high water-to-air ratio has been proven to be the key parameter for obtaining good online water wash effectiveness. Possible downsides of high water-to-air ratio have been thoroughly studied. The effect of optimized online water wash for the subject engines is longer intervals between maintenance stops, higher power availability, lower engine performance deterioration and reduced emissions (CO2 and NOx). The operating intervals are now extended to six months (4,000 hours), from initially two months (1,500 hours, early 1990s) followed by four months (3,000 hours, mid-2000s). Other installations operated as low as 750 hours between offline washes in the 1980s and 1990s. Of a total efficiency deterioration improvement of 6% over each 6-month operating period, the deterioration is reduced by an estimated 3% related to online water wash.


Author(s):  
Stian Madsen ◽  
Mehmet Serkan Yildirim ◽  
Lars E. Bakken

Optimized operation of gas turbines is discussed for a fleet of eleven LM2500PE engines at a Statoil North Sea offshore field i n Norway. Three engines are generator drivers whilst eight engines are compressor drivers. Several of the compressor drive engines are running at peak load (T5.4 control), hence the production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence gas turbine uptime is critical for the field’s production and economy. Two of the compressor drive engines are instrumented with a new static P2 probe in order to have an inlet depression measurement and thus be able to monitor compressor air flow. Compressor air flow has been used as an additional parameter to efficiency, in order to have better analysis methods and better documentation of deterioration rates. The performance gain with online water wash at high water-to-air ratio and upgraded inlet air filter systems, as well as successful operation at longer intervals between offline wash/maintenance stops are thus documented. An approach for developing a compressor map for mass flow based on field measurements, predictions and deterioration has been performed, as well as correction methods for engine load and ambient conditions in order to be able to compare performance points in various conditions and engine control modes. When monitoring compressor air flow, the Reynolds number effects on axial compressor performance can be analyzed. Understanding the gas turbine performance deterioration is of vital importance. Trending of its deviation from the engine baseline facilitates load-independent monitoring of the gas turbine’s condition. Instrument resolution and repeatability are key factors in order to have reasonable results on the performance analysis. Based on previous tests and analysis, the compressor air flow rate is the most sensitive parameter for detecting performance deterioration. Unfortunately, gas turbines for offshore operation, are normally not equipped with any air flow measurement devices.


Author(s):  
Steve Ingistov ◽  
Michael Milos ◽  
Rakesh K. Bhargava

A suitable inlet air filter system is required for a gas turbine, depending on installation site and its environmental conditions, to minimize contaminants entering the compressor section in order to maintain gas turbine performance. This paper describes evolution of inlet air filter systems utilized at the 420 MW Watson Cogeneration Plant consisting of four GE 7EA gas turbines since commissioning of the plant in November 1987. Changes to the inlet air filtration system became necessary due to system limitations, a desire to reduce operational and maintenance costs, and enhance overall plant performance. Based on approximately 2 years of operational data with the latest filtration system combined with other operational experiences of more than 25 years, it is shown that implementation of the high efficiency particulate air filter system provides reduced number of crank washes, gas turbine performance improvement and significant economic benefits compared to the traditional synthetic media type filters. Reasons for improved gas turbine performance and associated economic benefits, observed via actual operational data, with use of the latest filter system are discussed in this paper.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Author(s):  
Stian Madsen ◽  
Lars E. Bakken

Gas turbine performance has been analyzed for a fleet of GE LM2500 engines at two Statoil offshore fields in the North Sea. Both generator drive engines and compressor driver engines have been analyzed, covering both the LM2500 base and plus configurations, as well as the SAC and DLE combustor configurations. Several of the compressor drive engines are running at peak load (T5.4 control), and the production rate is thus limited to the available power from these engines. The majority of the engines discussed run continuously without redundancy, implying that gas turbine uptime is critical for the field’s production and economy. Previous studies and operational experience have emphasized that the two key factors to minimize compressor fouling are the optimum designs of the inlet air filtration system and the water wash system. An optimized inlet air filtration system, in combination with daily online water wash (at high water-to-air ratio), are the key factors to achieve successful operation at longer intervals between offline washes and higher average engine performance. Operational experience has documented that the main gas turbine recoverable deterioration is linked to the compressor section. The main performance parameter when monitoring compressor fouling is the gas turbine compressor efficiency. Previous studies have indicated that inlet depression (air mass flow at compressor inlet) is a better parameter when monitoring compressor fouling, whereas instrumentation for inlet depression is very seldom implemented on offshore gas turbine applications. The main challenge when analyzing compressor efficiency (uncorrected) is the large variation in efficiency during the periods between offline washes, mainly due to operation at various engine loads and ambient conditions. Understanding the gas turbine performance deterioration is of vital importance. Trending of the deviation from the engine baseline facilitates load-independent monitoring of the gas turbine’s condition. Instrument resolution and repeatability are key factors for attaining reliable results in the performance analysis. A correction methodology for compressor efficiency has been developed, which improves the long term trend data for effective diagnostics of compressor degradation. Avenues for further research and development are proposed in order to further increase the understanding of the deterioration mechanisms, as well as gas turbine performance and response.


Author(s):  
Todd Parker

Natural gas transmission systems have many sources of fugitive methane emissions that have been difficult to eliminate. This paper discusses an option for dealing with one such source for operations using turbo-compressor units fitted with dry gas seals. Dry seals rely on a small leakage of process gas to maintain the differential pressure of the process against the atmosphere. The seal leakage ultimately results in waste gas that is emitted to the atmosphere through the primary vent. A simple, cost effective, emission disposal mechanism for this application is to vent the seal gas into the gas turbine’s air intake. Explosion hazards are not created by the resultant ultra-lean fuel/air mixture, and once this mixture reaches the combustion chamber, where sufficient fuel is added to create a flammable mixture, significant oxidation of the seal vent gas is realized. Background of the relevant processes is discussed as well as a review of field test data. Similar applications have been reported [1] for the more generalized purpose of Volatile Organic Compound (VOC) destruction using specialized gas turbine combustor designs. As described herein, existing production gas turbine combustors are quite effective at fugitive methane destruction without specialized combustor designs.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Sign in / Sign up

Export Citation Format

Share Document