The Combustion Gas Turbine: Its History, Development, and Prospects

1939 ◽  
Vol 141 (1) ◽  
pp. 197-222 ◽  
Author(s):  
Adolf Meyer

By “combustion gas turbine” is meant a turbine actuated by the steady flow of the products of a continuous combustion under pressure in a combustion chamber. Inventors appear to have been at work on the gas turbine since 1791, the original attractions of the proposal being its simplicity and the elimination of the reciprocating motion of the early steam engines. Simplicity remains the principal advantage of the gas turbine, though the first applications have been made possible by the needs of special chemical processes, such as the Houdry cracking process. The efficiency attainable under present conditions is 17–18 per cent, but this would be increased to 23 per cent if the gas inlet temperature could be raised from 1,000 to 1,300 deg. F. The proposed new fields of application of the gas turbine include locomotive and marine propulsion, blast furnace plants, and the power supply for wind tunnels.

Author(s):  
Septimus van der Linden ◽  
Axel von Rappard

With the celebration of the 50th Anniversary of Turbo Expo and 125 years of ASME, it would be appropriate to once again review a paper read at the meeting in London, UK, of The Institution of Mechanical Engineers (founded 1847) on the 24th of February, 1939. This Paper was titled, “The Combustion Gas Turbine, it’s History Development and Prospects” by Adolf Meyer [1]. At the time, the first Industrial Gas Turbine generating set of 4000kW was on order by the City of Neuchatel [2], and cycle improvements for future units were already being proposed, as well as new fields of applications, such as Locomotives, Ship Propulsion, Wind Tunnels, Blast Furnace Plants, as well as Combined Gas Turbine and Steam Plants. In the section “Glimpse into the Future,” the field in which much progress was expected was the improvement in compressor efficiency and increased turbine inlet temperatures. Raising the overall efficiency of compressor and turbine to 92% and the inlet temperature to 2200 F, thermal efficiencies of 50% at the shaft coupling were envisioned, with units capable of delivering 65MW. These were the topics for three generations of engineers in several disciplines. This promising technology success would not have been possible without the coordinated leadership of far sighted managers of different OEM’s, and the tremendous courage for the introduction by the end-users.


1967 ◽  
Vol 89 (2) ◽  
pp. 217-227 ◽  
Author(s):  
R. C. Weatherston ◽  
A. Hertzberg

A method of circumventing the turbine inlet temperature limitation of present-day gas turbines is presented. This method is based on a direct fluid-to-fluid energy exchanger whereby the available energy of expansion of the hot combustion gas in a gas turbine cycle is transferred directly to a colder gas. The aerodynamic wave processes in several possible modes of operation are examined to determine the inherent limitations in efficiency of direct fluid-to-fluid energy exchange processes. In particular, it is demonstrated that, by using a system of isentropic compression waves to avoid shock losses and by carefully choosing the molecular weights of the fluids utilized in the energy exchanger, perfect energy exchange is possible in principle. When allowances are made for losses due to mixing, leakage, and viscous effects, an energy exchanger utilizing heated combustion air at 3240 deg F to drive steam at 1500 deg F with a potential energy exchange efficiency of 85 percent is feasible. Applications of the air-steam energy exchanger operating in gas turbine cycles utilizing a conservative choice of component efficiencies indicate that thermal efficiencies of gas turbine power cycles of 50–60 percent may be possible.


Author(s):  
Osamu Kurata ◽  
Norihiko Iki ◽  
Takayuki Matsunuma ◽  
Takahiro Inoue ◽  
Taku Tsujimura ◽  
...  

To protect against global warming, a massive influx of renewable energy is expected. Although hydrogen is a renewable media, its storage and transportation in large quantity is difficult. Ammonia, however, is a hydrogen energy carrier and carbon-free fuel, and its storage and transportation technology is already established. Although ammonia combustion was studied in the 1960s in the USA, the development of an ammonia combustion gas turbine had been abandoned because combustion efficiency was unacceptably low. Since that time, in the combustion field, ammonia has been thought of as a fuel N additive in the study of NOx formation. Recent demand for hydrogen carrier revives the usage of ammonia combustion, but no one has attempted an actual design setup for ammonia combustion gas turbine power generation. The National Institute of Advanced Industrial Science and Technology (AIST) in Japan successfully performed ammonia-kerosene co-fired gas turbine power generation in 2014, and ammonia-fired gas turbine power generation in 2015. In the facilities, a regenerator-heated, diffusion-combustion micro-gas turbine is used, and its high combustor inlet temperature enables high thermal efficiency of ammonia combustion compared with that of methane combustion. Adoption of the regenerator increased combustor inlet temperature and enhanced flame stability in ammonia-air combustion. Although NOx emission from a gas turbine combustor is high, a Selective Catalytic Reduction (SCR) after gas turbine combustor reduces NOx emission to less than 10 ppm. This means that the ammonia combustion gas turbine design, abandoned in the 1960s for its unacceptably low combustion efficiency, has performed successfully with regenerator and SCR technology. However, the weakness of these facilities was that they required large-size SCR equipment in order to suppress a high concentration of NOx. Although NOx reduction in the combustion process is desirable, low NOx combustion technology is difficult because ammonia had been thought of as a source of fuel-NO. In the case of premixed ammonia-air flame, there exists a low emission window of NOx and NH3 in a certain equivalence ratio, but combustion intensity is very low because the laminar burning velocity of NH3-air is one-fifth that of CH4-air. This means that, when utilizing the window of premixed ammonia-air flame, scale-up of the combustion chamber or fuel additives for enhancement of flame stability is necessary. This study shows that the addition of H2 is effective for low NOx combustion with high combustion efficiency. In addition, H2 can be easily made from NH3 decomposition. The other option is diffusion combustion. Further research on low NOx combustion is needed.


Author(s):  
Takero Fukudome ◽  
Sazo Tsuruzono ◽  
Wataru Karasawa ◽  
Yoshihiro Ichikawa

An 8000 kW class Hybrid Gas Turbine (HGT) project, administered by the New Energy and Industrial Technology Development Organization (NEDO), has been ongoing since July of 1999 in Japan. Targets of this project are improvement in thermal efficiency and output power by using ceramic components, and early commercialization of the gas turbine system. The ceramic components are used for stationary parts subjected to high temperature, such as combustor liners, transition ducts, and first stage turbine nozzles. Development of the gas turbine is conducted by Kawasaki Heavy Industries, Ltd. (KHI), to achieve the Turbine Inlet Temperature (TIT) of 1250°C, thermal efficiency of 34%, NOx emission less than standard regulation values, and 4,000 h engine durability. Kyocera is in charge of the development and evaluation of the ceramic components. Recently, recession of the Si based ceramic materials under the combustion gas is the focus of attention to improve the reliability of ceramic components for gas turbine. For the HGT project, the silicon nitride material (SN282 : silicon nitride material produced by Kyocera Corporation) is used for the components subjected to high temperature. The SN282 was evaluated under the combustion gas, and clear recession was observed. Our technology of the Environmental Barrier Coating (EBC) is under development to obtain reliable heat resistive SN282 components, against the recession by combustion gas. Reliability of the SN282 with EBC has been evaluated by exposure and hydrothermal corrosion test. Ceramic components made of SN282 with EBC will be also evaluated by a proof engine test of 4,000 h, which starts in the spring of 2002.


Author(s):  
Richard P. North ◽  
Roger E. Dawson

This paper presents the design and initial development of a conventional combustion system to meet the specific requirements of an Intercooled Recuperated (ICR) Gas Turbine for Marine Propulsion use. The ICR cycle offers considerable benefit in terms of fuel consumption over a wide power range, however, it presents the combustion designer with unique requirements including, but not limited to, air-to-fuel ratio (AFR) operating range, combustor inlet temperature range and combustion aerodynamics, whilst achieving acceptable combustion parameters such as ignition envelope, exit temperature traverse, smoke and emissions, component durability and integrity. The design and development of solutions to these challenges considered and chosen for the WR-21 are discussed, and results of early rig and engine testing outlined.


Author(s):  
Lei-Yong Jiang ◽  
Yinghua Han ◽  
Prakash Patnaik

To understand the physics of volcanic ash impact on gas turbine hot-components and develop much-needed tools for engine design and fleet management, the behaviors of volcanic ash in a gas turbine combustor and nozzle guide vanes (NGV) have been numerically investigated. High-fidelity numerical models are generated, and volcanic ash sample, physical, and thermal properties are identified. A simple critical particle viscosity—critical wall temperature model is proposed and implemented in all simulations to account for ash particles bouncing off or sticking on metal walls. The results indicate that due to the particle inertia and combustor geometry, the volcanic ash concentration in the NGV cooling passage generally increases with ash size and density, and is less sensitive to inlet velocity. It can reach three times as high as that at the air inlet for the engine conditions and ash properties investigated. More importantly, a large number of the ash particles entering the NGV cooling chamber are trapped in the cooling flow passage for all four turbine inlet temperature conditions. This may reveal another volcanic ash damage mechanism originated from engine cooling flow passage. Finally, some suggestions are recommended for further research and development in this challenging field. To the best of our knowledge, it is the first study on detailed ash behaviors inside practical gas turbine hot-components in the open literature.


Author(s):  
Xijia Wu ◽  
Zhong Zhang ◽  
Leiyong Jiang ◽  
Prakash Patnaik

Nozzle guide vanes (NGV) of gas turbine engines are the first components to withstand the impingement of hot combustion gas and therefore often suffer thermal fatigue failures in service. A lifting analysis is performed for the NGV of a gas turbine engine using the integrated creep–fatigue theory (ICFT). With the constitutive formulation of inelastic strain in terms of mechanism-strain components such as rate-independent plasticity, dislocation glide-plus-climb, and grain boundary sliding (GBS), the dominant deformation mechanisms at the critical locations are thus identified quantitatively with the corresponding mechanism-strain component. The material selection scenarios are discussed with regards to damage accumulated during take-off and cruise. The interplay of those deformation mechanisms in the failure process is elucidated such that an “optimum” material selection solution may be achieved.


1978 ◽  
Vol 100 (4) ◽  
pp. 640-646 ◽  
Author(s):  
P. Donovan ◽  
T. Cackette

A set of factors which reduces the variability due to ambient conditions of the hydrocarbon, carbon monoxide, and oxides of nitrogen emission indices has been developed. These factors can be used to correct an emission index to reference day ambient conditions. The correction factors, which vary with engine rated pressure ratio for NOx and idle pressure ratio for HC and CO, can be applied to a wide range of current technology gas turbine engines. The factors are a function of only the combustor inlet temperature and ambient humidity.


Author(s):  
D. A. Sullivan ◽  
P. A. Mas

The effect of inlet temperature, pressure, air flowrate and fuel-to-air ratio on NOx emissions from gas turbine combustors has received considerable attention in recent years. A number of semi-empirical and empirical correlations relating these variables to NOx emissions have appeared in the literature. They differ both in fundamental assumptions and in their predictions. In the present work, these simple NOx correlations are compared to each other and to experimental data. A review of existing experimental data shows that an adequate data base does not exist to evaluate properly the various NOx correlations. Recommendations are proposed to resolve this problem in the future.


Sign in / Sign up

Export Citation Format

Share Document