TURBODYNA: Centrifugal/Centripetal Turbomachinery Dynamic Simulator and its Application on a Mixed Flow Turbine

Author(s):  
Bijie Yang ◽  
Ricardo Martinez-Botas

Abstract 1D modelling is crucial for turbomachinery unsteady performance prediction and system response assessment. The purpose of the paper is to describe a newly developed 1D modelling (TURBODYNA) for turbomachinery. Different from classic 1D modelling, in TURBODYNA, rotor has been meshed and its unsteadiness due to flow field time scale is considered. Instead of direct using of performances maps, source terms are added in Euler equation set to simulate the rotor. By comparing 1D modelling with 3D CFD results, It shows that rotor unsteadiness is indispensable for a better prediction. In addition, different variables response to pulse differently. In the rotor, mass flow is close to quasi-steady while entropy is significantly unsteady. TURBODYNA can capture these features correctly and provide an accurate prediction on pressure wave transportation.

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Bijie Yang ◽  
Ricardo Martinez-Botas

Abstract One-dimensional (1D) modeling is crucial for turbomachinery unsteady performance prediction and system response assessment. The purpose of the paper is to describe a newly developed 1D modeling (turbomachinery dynamic simulator (TURBODYNA)) for turbomachinery. Different from classic 1D modeling, in TURBODYNA, rotor has been meshed and its unsteadiness due to flow field timescale is considered. Instead of direct using of performances maps, source terms are added in Euler equation set to simulate the rotor. By comparing 1D modeling with three-dimensional (3D) computational fluid dynamics (CFD) results, it shows that rotor unsteadiness is indispensable for a better prediction. In addition, different variables response to pulse differently. In the rotor, mass flow is close to quasi-steady while entropy is significantly unsteady. TURBODYNA can capture these features correctly and provide an accurate prediction on pressure wave transportation.


2021 ◽  
Author(s):  
Bijie Yang ◽  
Ricardo Martinez-Botas ◽  
Yingxian Xue ◽  
Mingyang Yang

Abstract One-dimensional (1D) modelling is critical for turbomachinery unsteady performance prediction and system response assessment of internal combustion engines. This paper uses a novel 1D modelling (TURBODYNA) and proposes two additional features for the application to a twin-entry turbocharger turbine. Compared to single-entry turbines, twin-entry turbines enhance turbocharger transient response and reduce engine exhaust valve overlap periods. However, out-of-phase high frequency pulsating pressure waves lead to an unsteady mixing process from the two flows and pose great challenges to traditional 1D modelling. The present work resolves the mixing problem by directly solving mass, momentum and energy conservation equations during the mixing process instead of applying constant pressure assumption at the limb-rotor joint. Comparisons of TURBODYNA and an experimentally validated CFD suggest that TURBODYNA can not only provide a very good agreement on turbine performance, but also accurately capture unsteady features due to flow field inertial and pressure wave propagation. Levels of accuracy achieved by TURBODYNA have proved superior to traditional 1D modelling on turbine performance and the generality of the current 1D modelling has been explored by extending the application to another turbine featuring distinct characteristics.


2022 ◽  
pp. 1-22
Author(s):  
Bijie Yang ◽  
Ricardo F. Martinez-Botas ◽  
Yingxian Xue ◽  
Mingyang Yang

Abstract One-dimensional (1D) modelling is critical for turbomachinery unsteady performance prediction and system response assessment of internal combustion engines. This paper uses a novel 1D modelling (TURBODYNA) and proposes two additional features for the application to a twin-entry turbocharger turbine. Compared to single-entry turbines, twin-entry turbines enhance turbocharger transient response and reduce engine exhaust valve overlap periods. However, out-of-phase high frequency pulsating pressure waves lead to an unsteady mixing process from the two flows and pose great challenges to traditional 1D modelling. The present work resolves the mixing problem by directly solving mass, momentum and energy conservation equations during the mixing process instead of applying constant pressure assumption at the limb-rotor joint. Comparisons of TURBODYNA and an experimentally validated CFD suggest that TURBODYNA can not only provide a very good agreement on turbine performance, but also accurately capture unsteady features due to flow field inertial and pressure wave propagation. Levels of accuracy achieved by TURBODYNA have proved superior to traditional 1D modelling on turbine performance and the generality of the current 1D modelling has been explored by extending the application to another turbine featuring distinct characteristics.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Fei Tian ◽  
Shuo Li ◽  
...  

In order to study the effect of different numbers of impeller blades on the performance of mixed-flow pump “saddle zone”, the external characteristic test and numerical simulation of mixed-flow pumps with three different impeller blade numbers were carried out. Based on high-precision numerical prediction, the internal flow field and tip leakage flow field of mixed flow pump under design conditions and stall conditions are investigated. By studying the vorticity transport in the stall flow field, the specific location of the high loss area inside the mixed flow pump impeller with different numbers of blades is located. The research results show that the increase in the number of impeller blades improve the pump head and efficiency under design conditions. Compared to the 4-blade impeller, the head and efficiency of the 5-blade impeller are increased by 5.4% and 21.9% respectively. However, the increase in the number of blades also leads to the widening of the “saddle area” of the mixed-flow pump, which leads to the early occurrence of stall and increases the instability of the mixed-flow pump. As the mixed-flow pump enters the stall condition, the inlet of the mixed-flow pump has a spiral swirl structure near the end wall for different blade numbers, but the depth and range of the swirling flow are different due to the change in the number of blades. At the same time, the change in the number of blades also makes the flow angle at 75% span change significantly, but the flow angle at 95% span is not much different because the tip leakage flow recirculates at the leading edge. Through the analysis of the vorticity transport results in the impeller with different numbers of blades, it is found that the reasons for the increase in the values of the vorticity transport in the stall condition are mainly impacted by the swirl flow at the impeller inlet, the tip leakage flow at the leading edge and the increased unsteady flow structures.


2011 ◽  
Vol 27 (2) ◽  
pp. 253-266 ◽  
Author(s):  
S.-H. Yang ◽  
S.-Y. Jaw ◽  
K.-C. Yeh

ABSTRACTThis study utilized a U-shape platform device to generate a single cavitation bubble for the detail analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse induced by pressure wave. A series of bubble collapse flows induced by pressure waves of different strengths are investigated by positioning the cavitation bubble at different stand-off distances to the solid boundary. It is found that the Kelvin-Helmholtz vortices are formed when the liquid jet induced by the pressure wave penetrates the bubble surface. If the bubble center to the solid boundary is within one to three times the bubble's radius, a stagnation ring will form on the boundary when impacted by the penetrated jet. The liquid inside the stagnation ring is squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble's radius, the bubble collapse flows will vary. Depending on the strengths of the pressure waves applied, either just the Kelvin-Helmholtz vortices form around the penetrated jet or the penetrated jet impacts the boundary directly to generate the stagnation ring and the counter jet flow. This phenomenon used the particle image velocimetry method can be clearly revealed the flow field variation of the counter jet. If the bubble surface is in contact with the solid boundary, the liquid jet can only splash radially without producing the stagnation ring and the counter jet. The complex phenomenon of cavitation bubble collapse flows are clearly manifested in this study.


Author(s):  
Meng Soon Chiong ◽  
Srithar Rajoo ◽  
Alessandro Romagnoli ◽  
Ricardo Martinez-Botas

Turbochargers are widely regarded as one of the most promising enabling technology for engine downsizing, in the aim to achieve better specific fuel consumption, thermal efficiency and most importantly carbon reduction. The increasing demand for higher quality engine-turbocharger matching, leads to the development of computational models capable of predicting the unsteady behaviour of a turbocharger turbine when subjected to pulsating inlet flow. Due to the wide range of engine loads and speed variations, an automotive turbocharger turbine model must be able to render all the frequency range of a typical exhaust pulse flow. A purely one-dimensional (1-D) turbine model is capable of good unsteady swallowing capacity prediction, provided it is accurately validated. However, the unsteady turbine power evaluation still heavily relies on the quasi-steady assumption. On the other hand, meanline model is capable of resolving the turbine work output but it is limited to steady state flow due to its zero dimensional nature. This paper explores an alternative methodology to realize turbine unsteady power prediction in 1-D by integrating these two independent modelling methods. A single entry mixed-flow turbine is first modelled using 1-D gas dynamic method to solve the unsteady flow propagation in turbine volute while the instantaneous turbine power is subsequently evaluated using a mean-line model. The key in the effectiveness of this methodology relies on the synchronization of the flow information with different time-scales. In addition to the turbine performance parameters, the common level of unsteadiness was also compared based on the Strouhal number evaluations. Comparison of the quasi-steady assumption using the experiment results was made in order to further understand the strength and weaknesses of corresponding method in unsteady turbine performance prediction. The outcomes of the simulation showed a good agreement in the shape and trend profile for the instantaneous turbine power. Meanwhile the predicted cycle-averaged value indicates a positive potential of the current turbine model to be expanded to a whole engine simulation after few minor improvements.


Sign in / Sign up

Export Citation Format

Share Document