ONE DIMENSIONAL MODELLING FOR PULSED FLOW TWIN-ENTRY TURBINE

2022 ◽  
pp. 1-22
Author(s):  
Bijie Yang ◽  
Ricardo F. Martinez-Botas ◽  
Yingxian Xue ◽  
Mingyang Yang

Abstract One-dimensional (1D) modelling is critical for turbomachinery unsteady performance prediction and system response assessment of internal combustion engines. This paper uses a novel 1D modelling (TURBODYNA) and proposes two additional features for the application to a twin-entry turbocharger turbine. Compared to single-entry turbines, twin-entry turbines enhance turbocharger transient response and reduce engine exhaust valve overlap periods. However, out-of-phase high frequency pulsating pressure waves lead to an unsteady mixing process from the two flows and pose great challenges to traditional 1D modelling. The present work resolves the mixing problem by directly solving mass, momentum and energy conservation equations during the mixing process instead of applying constant pressure assumption at the limb-rotor joint. Comparisons of TURBODYNA and an experimentally validated CFD suggest that TURBODYNA can not only provide a very good agreement on turbine performance, but also accurately capture unsteady features due to flow field inertial and pressure wave propagation. Levels of accuracy achieved by TURBODYNA have proved superior to traditional 1D modelling on turbine performance and the generality of the current 1D modelling has been explored by extending the application to another turbine featuring distinct characteristics.

2021 ◽  
Author(s):  
Bijie Yang ◽  
Ricardo Martinez-Botas ◽  
Yingxian Xue ◽  
Mingyang Yang

Abstract One-dimensional (1D) modelling is critical for turbomachinery unsteady performance prediction and system response assessment of internal combustion engines. This paper uses a novel 1D modelling (TURBODYNA) and proposes two additional features for the application to a twin-entry turbocharger turbine. Compared to single-entry turbines, twin-entry turbines enhance turbocharger transient response and reduce engine exhaust valve overlap periods. However, out-of-phase high frequency pulsating pressure waves lead to an unsteady mixing process from the two flows and pose great challenges to traditional 1D modelling. The present work resolves the mixing problem by directly solving mass, momentum and energy conservation equations during the mixing process instead of applying constant pressure assumption at the limb-rotor joint. Comparisons of TURBODYNA and an experimentally validated CFD suggest that TURBODYNA can not only provide a very good agreement on turbine performance, but also accurately capture unsteady features due to flow field inertial and pressure wave propagation. Levels of accuracy achieved by TURBODYNA have proved superior to traditional 1D modelling on turbine performance and the generality of the current 1D modelling has been explored by extending the application to another turbine featuring distinct characteristics.


Author(s):  
Bijie Yang ◽  
Ricardo Martinez-Botas

Abstract 1D modelling is crucial for turbomachinery unsteady performance prediction and system response assessment. The purpose of the paper is to describe a newly developed 1D modelling (TURBODYNA) for turbomachinery. Different from classic 1D modelling, in TURBODYNA, rotor has been meshed and its unsteadiness due to flow field time scale is considered. Instead of direct using of performances maps, source terms are added in Euler equation set to simulate the rotor. By comparing 1D modelling with 3D CFD results, It shows that rotor unsteadiness is indispensable for a better prediction. In addition, different variables response to pulse differently. In the rotor, mass flow is close to quasi-steady while entropy is significantly unsteady. TURBODYNA can capture these features correctly and provide an accurate prediction on pressure wave transportation.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Bijie Yang ◽  
Ricardo Martinez-Botas

Abstract One-dimensional (1D) modeling is crucial for turbomachinery unsteady performance prediction and system response assessment. The purpose of the paper is to describe a newly developed 1D modeling (turbomachinery dynamic simulator (TURBODYNA)) for turbomachinery. Different from classic 1D modeling, in TURBODYNA, rotor has been meshed and its unsteadiness due to flow field timescale is considered. Instead of direct using of performances maps, source terms are added in Euler equation set to simulate the rotor. By comparing 1D modeling with three-dimensional (3D) computational fluid dynamics (CFD) results, it shows that rotor unsteadiness is indispensable for a better prediction. In addition, different variables response to pulse differently. In the rotor, mass flow is close to quasi-steady while entropy is significantly unsteady. TURBODYNA can capture these features correctly and provide an accurate prediction on pressure wave transportation.


2021 ◽  
pp. 146808742110344
Author(s):  
José Galindo ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Nicolás Medina

The current paper presents the validation of some hypotheses used for developing a one-dimensional twin-entry turbine model with experimental measurements. A Laser Doppler Anemometry (LDA) technique has been used for measuring the axial Mach number and for counting the number of particles downstream of the rotor outlet. These measurements have been done for different mass flow ratio (MFR) and reduced turbocharger speed conditions. The flow coming from each turbine entry does not fully mix with the other within the rotor since, downstream of the rotor, they can still be differentiated. Thus, the hypothesis of studying twin-entry turbines as two separated single-entry turbines in one-dimensional models is corroborated. Moreover, the rotor outlet area corresponding to each flow branch has linear trends with the MFR value. Therefore, the rotor outlet effective area used for one-dimensional models should vary linearly with the MFR value.


1972 ◽  
Vol 94 (1) ◽  
pp. 1-7 ◽  
Author(s):  
O. B. Dale ◽  
R. Cohen

A method is presented for obtaining and optimizing the frequency response of one-dimensional damped linear continuous systems. The systems considered are assumed to contain unknown constant parameters in the boundary conditions and equations of motion which the designer can vary to obtain a minimum resonant response in some selected frequency interval. The unknown parameters need not be strictly dissipative nor unconstrained. No analytic solutions, either exact or approximate, are required for the system response and only initial value numerical integrations of the state and adjoint differential equations are required to obtain the optimal parameter set. The combinations of state variables comprising the response and the response locations are arbitrary.


2019 ◽  
Vol 21 (8) ◽  
pp. 1493-1519
Author(s):  
Abhishek Y Deshmukh ◽  
Carsten Giefer ◽  
Dominik Goeb ◽  
Maziar Khosravi ◽  
David van Bebber ◽  
...  

Direct injection of compressed natural gas in internal combustion engines is a promising technology to achieve high indicated thermal efficiency and, at the same time, reduce harmful exhaust gas emissions using relatively low-cost fuel. However, the design and analysis of direct injection–compressed natural gas systems are challenging due to small injector geometries and high-speed gas flows including shocks and discontinuities. The injector design typically involves either a multi-hole configuration with inwardly opening needle or an outwardly opening poppet-type valve with small geometries, which make accessing the near-nozzle-flow field difficult in experiments. Therefore, predictive simulations can be helpful in the design and development processes. Simulations of the gas injection process are, however, computationally very expensive, as gas passages of the order of micrometers combined with a high Mach number compressible gas flow result in very small simulation time steps of the order of nanoseconds, increasing the overall computational wall time. With substantial differences between in-nozzle and in-cylinder length and velocity scales, simultaneous simulation of both regions becomes computationally expensive. Therefore, in this work, a quasi-one-dimensional nozzle-flow model for an outwardly opening poppet-type injector is developed. The model is validated by comparison with high-fidelity large-eddy simulation results for different nozzle pressure ratios. The quasi-one-dimensional nozzle-flow model is dynamically coupled to a three-dimensional flow solver through source terms in the governing equations, named as dynamically coupled source model. The dynamically coupled source model is then applied to a temporal gas jet evolution case and a cold flow engine case. The results show that the dynamically coupled source model can reasonably predict the gas jet behavior in both cases. All simulations using the new model led to reductions of computational wall time by a factor of 5 or higher.


Author(s):  
Meng Soon Chiong ◽  
Srithar Rajoo ◽  
Alessandro Romagnoli ◽  
Ricardo Martinez-Botas

Turbochargers are widely regarded as one of the most promising enabling technology for engine downsizing, in the aim to achieve better specific fuel consumption, thermal efficiency and most importantly carbon reduction. The increasing demand for higher quality engine-turbocharger matching, leads to the development of computational models capable of predicting the unsteady behaviour of a turbocharger turbine when subjected to pulsating inlet flow. Due to the wide range of engine loads and speed variations, an automotive turbocharger turbine model must be able to render all the frequency range of a typical exhaust pulse flow. A purely one-dimensional (1-D) turbine model is capable of good unsteady swallowing capacity prediction, provided it is accurately validated. However, the unsteady turbine power evaluation still heavily relies on the quasi-steady assumption. On the other hand, meanline model is capable of resolving the turbine work output but it is limited to steady state flow due to its zero dimensional nature. This paper explores an alternative methodology to realize turbine unsteady power prediction in 1-D by integrating these two independent modelling methods. A single entry mixed-flow turbine is first modelled using 1-D gas dynamic method to solve the unsteady flow propagation in turbine volute while the instantaneous turbine power is subsequently evaluated using a mean-line model. The key in the effectiveness of this methodology relies on the synchronization of the flow information with different time-scales. In addition to the turbine performance parameters, the common level of unsteadiness was also compared based on the Strouhal number evaluations. Comparison of the quasi-steady assumption using the experiment results was made in order to further understand the strength and weaknesses of corresponding method in unsteady turbine performance prediction. The outcomes of the simulation showed a good agreement in the shape and trend profile for the instantaneous turbine power. Meanwhile the predicted cycle-averaged value indicates a positive potential of the current turbine model to be expanded to a whole engine simulation after few minor improvements.


2018 ◽  
Vol 20 (4) ◽  
pp. 393-404 ◽  
Author(s):  
José Galindo ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Daniel Tarí ◽  
Hadi Tartoussi ◽  
...  

Zero-dimensional/one-dimensional computational fluid dynamics codes are used to simulate the performance of complete internal combustion engines. In such codes, the operation of a turbocharger compressor is usually addressed employing its performance map. However, simulation of engine transients may drive the compressor to work at operating conditions outside the region provided by the manufacturer map. Therefore, a method is required to extrapolate the performance map to extended off-design conditions. This work examines several extrapolating methods at the different off-design regions, namely, low-pressure ratio zone, low-speed zone and high-speed zone. The accuracy of the methods is assessed with the aid of compressor extreme off-design measurements. In this way, the best method is selected for each region and the manufacturer map is used in design conditions, resulting in a zonal extrapolating approach aiming to preserve accuracy. The transitions between extrapolated zones are corrected, avoiding discontinuities and instabilities.


2019 ◽  
pp. 146808741988942
Author(s):  
Antonio Torregrosa ◽  
Luis Miguel García-Cuevas ◽  
Lukas Benjamin Inhestern ◽  
Pablo Soler

Estimating correctly the turbine acoustics can be valuable during the engine design stage; in fact, it can lead to a more optimised design of the silencer and aftertreatment, as well as to better prediction of the scavenging effects. However, obtaining the sound and noise emissions of radial turbocharger turbines with low computational costs can be challenging. To consider these effects in a time-efficient manner, the acoustic response of single-entry radial turbines can be characterised by means of acoustic transfer matrices that change with the operating conditions. Exploiting the different time-scales of the acoustic phenomena and the change in the operating point of the turbine, lookup tables of acoustic transfer matrices can be computed. Then, the obtained characterisation can be used in mean-value engine models. This article presents a method for generating these lookup tables by means of fast one-dimensional simulations of thoroughly validated fidelity, in terms of both acoustics and extrapolation capabilities. Due to the inherent behaviour of radial turbines, the number of computations needed to fill the lookup tables is relatively small, so the method can be used as a simple preprocessing phase before mean-value simulation campaigns.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Colin D. Copeland ◽  
Ricardo Martinez-Botas ◽  
Martin Seiler

Circumferentially divided, double entry turbocharger turbines are designed with a dividing wall parallel to the machine axis such that each entry feeds a separate 180 deg section of the nozzle circumference prior to entry into the rotor. This allows the exhaust pulses originating from the internal combustion exhaust to be preserved. Since the turbine is fed by two separate unsteady flows, the phase difference between the exhaust pulses entering the turbine rotor will produce a momentary imbalance in the flow conditions around the periphery of the turbine rotor. This research seeks to provide new insight into the impact of unsteadiness on turbine performance. The discrepancy between the pulsed flow behavior and that predicted by a typical steady flow performance map is a central issue considered in this work. In order to assess the performance deficit attributable to unequal admission, the steady flow conditions introduced in one inlet were varied with respect to the other. The results from these tests were then compared with unsteady, in-phase and out-of-phase pulsed flows most representative of the actual engine operating condition.


Sign in / Sign up

Export Citation Format

Share Document