On the Integration of Hot Foil Bearings Into Gas Turbine Engines: Theoretical Treatment

Author(s):  
Hooshang Heshmat ◽  
James F. Walton

Abstract To achieve high power density Gas Turbine Engines (GTEs), R&D efforts have strived to develop machines that spin faster and run hotter. One method to achieve that goal is to use high temperature capable foil bearings. In order to successfully integrate these advanced foil bearings into GTE systems, a theoretical understanding of both bearing and rotor system integration is essential. Without a fundamental understanding and sound theoretical modeling of the foil bearing coupled with the rotating system such an approach would prove application efforts fruitless. It is hoped that the information provided in this paper will open up opportunistic doors to designs presently thought to be impossible. In this paper an attempt is made to describe how an advanced foil bearing is modeled for extreme high temperature operation in high performance turbomachinery including GTEs, Supercritical CO2 turbine generators and others. The authors present the advances in foil bearing capabilities that were crucial to achieving high temperature operation. Achieving high performance in a compliant foil bearing under the wide extremes of operating temperatures, pressures and speeds, requires a bearing system design approach that accounts for the highly interrelated compliant surface foil bearing elements such as: the structural stiffness and frictional characteristics of the underlying compliant support structure across the operating temperature and pressure spectrum; and the coupled interaction of the structural elements with the hydrodynamic pressure generation. This coupled elasto-hydrodynamic-Finite Element highly non-linear iterative methodology will be used by the authors to present a series of foil bearing design evaluations analyzing and modeling the foil bearing under extreme conditions. The complexity of the problem of achieving foil bearing system operation beyond 870°C (1600°F) requires as a prerequisite the attention to the tribological details of the foil bearing. For example, it is necessary to establish how both the frictional and viscous damping coefficient elements as well as the structural and hydrodynamic stiffness are to be combined. By combining these characteristics the influence of frictional coefficients of the elastic and an-elastic materials on bearing structural stiffness and hence the bearing effective coupled elasto-hydrodynamic stiffness coefficients will be shown. Given that the bearing dynamic parameters — stiffness and damping coefficients — play a major role in the control of system dynamics, the design approach to successfully integrate compliant foil bearings into complex rotating machinery systems operating in extreme environments is explored by investigating the effects of these types of conditions on rotor-bearing system dynamics. The proposed rotor/bearing model is presented to describe how system dynamics and bearing structural properties and operating characteristics are inextricably linked together in a manner that results in a series separate but intertwined iterative solutions. Finally, the advanced foil bearing modeling and formulation in connection with resulting rotor dynamics of the system will be carried out for an experimental GTE simulator test rig. The analytical results will be compared with the experiments as presented previously to demonstrate the effectiveness of the developed method in a real world application [1].

Author(s):  
F. J. Suriano ◽  
R. D. Dayton ◽  
Fred G. Woessner

The Garrett Turbine Engine Company, a Division of the Garrett Corporation, authorized under Air Force Contract F33615-78-C-2044 and Navy Contract N00140-79-C-1294, has been conducting development work on the application of gas-lubricated hydrodynamic journal foil bearings to the turbine end of gas turbine engines. Program efforts are directed at providing the technology base necessary to utilize high-temperature foil bearings in future gas turbine engines. The main thrust of these programs was to incorporate the designed bearings, developed in test rigs, into test engines for evaluation of bearing and rotor system performance. The engine test programs included a full range of operational tests; engine thermal environment, endurance, start/stops, attitude, environmental temperatures and pressures, and simulated maneuver bearing loadings. An 88.9 mm (3.5-inch) diameter journal foil bearing, operating at 4063 RAD/SEC (38,800 rpm), has undergone test in a Garrett GTCP165 auxiliary power unit. A 44.4 mm (1.75-inch) diameter journal foil bearing, operating at 6545 RAD/SEC (62,500 rpm) has undergone test in the gas generator of the Garrett Model JFS190. This paper describes the engine test experience with these bearings.


Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Brian D. Nicholson

In this paper, the authors present the results of recent developments demonstrating that ultra-high temperature compliant foil bearings are suitable for application in a wide range of high temperature turbomachinery including gas turbine engines, supercritical CO2 power turbines and automotive turbochargers as supported by test data showing operation of foil bearings at temperatures to 870°C (1600°F). This work represents the culmination of efforts begun in 1987, when the U.S. Air Force established and led the government and industry collaborative Integrated High Performance Turbine Engine Technology (IHPTET) program. The stated goal of IHPTET was to deliver twice the propulsion capability of turbine engines in existence at that time. Following IHPTET, the Versatile Affordable Advanced Turbine Engines (VAATE) program further expanded on the original goals by including both versatility and affordability as key elements in advancing turbine engine technology. Achieving the stated performance goals would require significantly more extreme operating conditions including higher temperatures, pressures and speeds, which in turn would require bearings capable of sustaining temperatures in excess of 815°C (1500°F). Similarly, demands for more efficient automotive engines and power plants are subjecting the bearings in turbochargers and turbogenerators to more severe environments. Through the IHPTET and VAATE programs, the U.S. has made considerable research investments to advancing bearing technology, including active magnetic bearings, solid and vapor phase lubricated rolling element bearings, ceramic/hybrid ceramic bearings, powder lubricated bearings and compliant foil gas bearings. Thirty years after the IHPTET component goal of developing a bearing capable of sustained operation at temperatures above 540°C and potentially as high as 815°C (1500°F) recent testing has demonstrated achievement of this goal with an advanced, ultra-high temperature compliant foilgas bearing. Achieving this goal required a combination of high temperature foil material, a unique elastic-tribo-thermal barrier coating (KOROLON 2250) and a self-adapting compliant configuration. The authors describe the experimental hardware designs and design considerations of the two differently sized test rigs used to demonstrate foil bearings operating above 815°C (1500°F). Finally, the authors present and discuss the results of testing at temperatures to 870°C (1600°F).


Alloy Digest ◽  
1999 ◽  
Vol 48 (7) ◽  

Abstract Haynes alloy 75 is an 80 nickel-20 chromium alloy with both good oxidation resistance and good mechanical properties at high temperatures. It is amenable to all forms of fabrication and welding. A typical application for sheet metal is fabrications in gas turbine engines. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming and heat treating. Filing Code: Ni-557. Producer or source: Haynes International Inc.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4214
Author(s):  
Kranthi Kumar Maniam ◽  
Shiladitya Paul

The increased demand for high performance gas turbine engines has resulted in a continuous search for new base materials and coatings. With the significant developments in nickel-based superalloys, the quest for developments related to thermal barrier coating (TBC) systems is increasing rapidly and is considered a key area of research. Of key importance are the processing routes that can provide the required coating properties when applied on engine components with complex shapes, such as turbine vanes, blades, etc. Despite significant research and development in the coating systems, the scope of electrodeposition as a potential alternative to the conventional methods of producing bond coats has only been realised to a limited extent. Additionally, their effectiveness in prolonging the alloys’ lifetime is not well understood. This review summarises the work on electrodeposition as a coating development method for application in high temperature alloys for gas turbine engines and discusses the progress in the coatings that combine electrodeposition and other processes to achieve desired bond coats. The overall aim of this review is to emphasise the role of electrodeposition as a potential cost-effective alternative to produce bond coats. Besides, the developments in the electrodeposition of aluminium from ionic liquids for potential applications in gas turbines and the nuclear sector, as well as cost considerations and future challenges, are reviewed with the crucial raw materials’ current and future savings scenarios in mind.


Author(s):  
K. Shalash ◽  
J. Schiffmann

Potential geometrical deviations in bump foil bearings due to manufacturing uncertainty can have significant effects on both the local stiffness and clearance, and hence, affecting the overall bearing performance. The manufacturing uncertainty of bump type foil bearings was investigated, showing large geometrical deviations, using a developed measurement tool for the formed bump foils. A reduced order foil bearing model was used in a Monte Carlo simulation studying the effect of manufacturing noise on the onset of instability, highlighting the sensitivity of the rotor-bearing system to such manufacturing deviations. It was found that 30% of the simulated cases resulted improvements in stability, the remaining cases underperformed. Attempting to increase the robustness of the bearing, two other compliant structures replacing the classical gen-II bump foils were investigated from a manufacturing perspective. The first is a modified bump type Sinusoidal foil, and the second is the Cantilever beam foil. Consequently, quasi-static load-displacement tests were executed showing deviations in local clearance and stiffness for the classical bump type compliant structure compared to the other designs. It was found that the Cantilever beam foils yield more robustness compared to the bump type foils. Finally, an analytical model for the sequential engagement of the compliant structure is presented and validated with experimental measurements for both bump type and Cantilever structures.


Author(s):  
J. M. Lane

While the radial in-flow turbine has consistently demonstrated its capability as a high-performance component for small gas turbine engines, its use has been relegated to lower turbine-inlet-temperature cycles due to insurmountable problems with respect to the manufacturing of radial turbine rotors with internal cooling passages. These cycle temperature limitations are not consistent with modern trends toward higher-performance, fuel-conservative engines. This paper presents the results of several Army-sponsored programs, the first of which addresses the performance potential for the high-temperature radial turbine. The subsequent discussion presents the results of two successful programs dedicated to developing fabrication techniques for internally cooled radial turbines, including mechanical integrity testing. Finally, future near-term capabilities are projected.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.


Sign in / Sign up

Export Citation Format

Share Document