Impact of Secondary Air Flow on Combustor Emissions

Author(s):  
Bassam S. Mohammad ◽  
Brian Volk ◽  
Keith McManus

Abstract It is a common practice to relate emissions performance of Dry Low Emissions (DLE) combustion systems to the flame temperature that is estimated from the mass flows of air and fuel flowing through the premixer. In many combustion systems, the exit temperature (or turbine nozzle inlet temperature) is quite low and is not a good parameter for estimating combustion emissions. The difference between the combustion flame temperature and exit temperature is mainly due to secondary air dilution. To our knowledge there are no detailed published data that quantify the impact of this temperature difference on combustion emissions. The target of this study is to quantify the impact of secondary air variation on emissions, both globally and locally. High pressure experiments are conducted at H class gas turbine operating conditions using a DLE combustion system. In the context of this DLE system, secondary air refers to cooling and leakage flows because direct air dilution of the combustion gasses is not necessary. This is because the flame stabilized downstream of the premixer is well mixed and fuel-lean. With NOx requirements moving toward single digit (ppm) levels, it becomes essential to accurately quantify the impact of reducing the secondary air percentage on emissions performance. In addition to the need to carefully study the impact of local interaction of the secondary air with the flame. The combustion system is configured with two independently controlled mixers along with a variable secondary air circuit that can change the secondary air fraction from 14 to 8%. Multiple emissions rakes are used at the combustor exit to delineate the interaction and relate it to the flame structure. The system is configured to enable sampling from individual rakes to study local emissions and the rakes can be ganged together to measure the bulk-averaged combustion emissions. This research provides a quantification of the improvement of the NOx margin with a decrease in the secondary air percentage. The study shows that the increase in margin is not a simple re-estimate of the combustor emissions using the NOx design curve due to flame quenching effects. The results also show that the secondary air can be used to improve the NOx emissions via controlling the interaction with the primary flame. The impact is quantified in terms of emissions, acoustics and metal temperatures.

Author(s):  
Bassam S. Mohammad ◽  
Preetham Balasubramanyam ◽  
Keith McManus ◽  
Jeffrey Ruszczyk ◽  
Ahmed M. Elkady ◽  
...  

Combustion dynamics have detrimental effects on hardware durability as well as combustor performance and emissions. This paper presents a detailed study on the impact of combustion dynamics on NOx and CO emissions generated from a prototype gas turbine combustor operating at a pressure of 180 psia (12.2 bars) with a pre-heat temperature of 720 F (655.3 K) (E-class machine operating conditions). Two unstable modes are discussed. The first is an intermittent mode, at 750 Hz, that emerges at flame temperatures near 2900°F (1866.5 K), resulting in high NOx and CO emissions. With increasing fuel flow, NOx and CO emissions continue to increase until the flame temperature reaches approximately 3250°F (2061 K), at which point the second acoustic mode begins to dominate. Flame images indicate that the intermittent mode is associated with flame motion which induces the high NOx and CO emissions. The second mode is also a 750 Hz, but of constant amplitude (no intermittency). Operation in this second 750 Hz mode results in significantly reduced NOx and CO emissions. At pressures higher than 180 psia (12.2 bars), the intermittent mode intensifies, leading to flashback at flame temperatures above 2850°F (1839 K). In order to mitigate the intermittent mode, a second configuration of the combustor included an exit area restriction. The exit area restriction eliminated the intermittent mode, resulting in stable operation and low emissions over a temperature range of 2700–3200°F (1755–2033 K). A comparison of the NOx emissions, as function of flame temperature, with previous published data for perfectly premixed indicates that, while the low amplitude 750 Hz oscillations have little effect, the intermittent mode significantly increases emissions. Mode shape analysis shows that the 750 Hz instability corresponds to the 1/4 wave axial mode. In the current research a ceramic liner is used while the previous published data was collected with a quartz liner. Typically, quartz is avoided due to reductions in effective flame temperature by radiation losses. Experiments showed that NOx emissions were not affected by the combustor liner type. This agreement between the quartz and ceramic liners data indicates limited effect from the radiation heat losses on NOx emissions.


Author(s):  
Fan Gong ◽  
Yong Huang

The objective of this work is to investigate the flame stabilization mechanism and the impact of the operating conditions on the characteristics of the steady, lean premixed flames. It’s well known that the flame base is very important to the existence of a flame, such as the flame after a V-gutter, which is typically used in ramjet and turbojet or turbofan afterburners and laboratory experiments. We performed two-dimensional simulations of turbulent premixed flames anchored downstream of the heat-conducting V-gutters in a confined passage for kerosene-air combustion. The flame bases are symmetrically located in the shear layers of the recirculation zone immediately after the V-gutter’s trailing edge. The effects of equivalence ratio of inlet mixture, inlet temperature, V-gutter’s thermal conductivity and inlet velocity on the flame base movements are investigated. When the equivalence ratio is raised, the flame base moves upstream slightly and the temperature gradient dT/dx near the flame base increases, so the flame base is strengthened. When the inlet temperature is raised, the flame base moves upstream very slightly, and near the flame base dT/dx increases and dT/dy decreases, so the flame base is strengthened. As the V-gutter’s thermal conductivity increases, the flame base moves downstream, and the temperature gradient dT/dx near the flame base decreases, so the flame base is weakened. When the inlet velocity is raised, the flame base moves upstream, and the convection heat loss with inlet mixture increases, so the flame base is weakened.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Richard Eiland ◽  
John Edward Fernandes ◽  
Marianna Vallejo ◽  
Ashwin Siddarth ◽  
Dereje Agonafer ◽  
...  

Complete immersion of servers in dielectric mineral oil has recently become a promising technique for minimizing cooling energy consumption in data centers. However, a lack of sufficient published data and long-term documentation of oil immersion cooling performance make most data center operators hesitant to apply these approaches to their mission critical facilities. In this study, a single server was fully submerged horizontally in mineral oil. Experiments were conducted to observe the effects of varying the volumetric flow rate and oil inlet temperature on thermal performance and power consumption of the server. Specifically, temperature measurements of the central processing units (CPUs), motherboard (MB) components, and bulk fluid were recorded at steady-state conditions. These results provide an initial bounding envelope of environmental conditions suitable for an oil immersion data center. Comparing with results from baseline tests performed with traditional air cooling, the technology shows a 34.4% reduction in the thermal resistance of the system. Overall, the cooling loop was able to achieve partial power usage effectiveness (pPUECooling) values as low as 1.03. This server level study provides a preview of possible facility energy savings by utilizing high temperature, low flow rate oil for cooling. A discussion on additional opportunities for optimization of information technology (IT) hardware and implementation of oil cooling is also included.


Author(s):  
Jacob E. Rivera ◽  
Robert L. Gordon ◽  
Mohsen Talei ◽  
Gilles Bourque

Abstract This paper reports on an optimisation study of the CO turndown behaviour of an axially staged combustor, in the context of industrial gas turbines (GT). The aim of this work is to assess the optimally achievable CO turndown behaviour limit given system and operating characteristics, without considering flow-induced behaviours such as mixing quality and flame spatial characteristics. To that end, chemical reactor network modelling is used to investigate the impact of various system and operating conditions on the exhaust CO emissions of each combustion stage, as well as at the combustor exit. Different combustor residence time combinations are explored to determine their contribution to the exhaust CO emissions. The two-stage combustor modelled in this study consists of a primary (Py) and a secondary (Sy) combustion stage, followed by a discharge nozzle (DN), which distributes the exhaust to the turbines. The Py is modelled using a freely propagating flame (FPF), with the exhaust gas extracted downstream of the flame front at a specific location corresponding to a specified residence time (tr). These exhaust gases are then mixed and combusted with fresh gases in the Sy, modelled by a perfectly stirred reactor (PSR) operating within a set tr. These combined gases then flow into the DN, which is modelled by a plug flow reactor (PFR) that cools the gas to varying combustor exit temperatures within a constrained tr. Together, these form a simplified CRN model of a two-stage, dry-low emissions (DLE) combustion system. Using this CRN model, the impact of the tr distribution between the Py, Sy and DN is explored. A parametric study is conducted to determine how inlet pressure (Pin), inlet temperature (Tin), equivalence ratio (ϕ) and Py-Sy fuel split (FS), individually impact indicative CO turndown behaviour. Their coupling throughout engine load is then investigated using a model combustor, and its effect on CO turndown is explored. Thus, this aims to deduce the fundamental, chemically-driven parameters considered to be most important for identifying the optimal CO turndown of GT combustors. In this work, a parametric study and a model combustor study are presented. The parametric study consists of changing a single parameter at a time, to observe the independent effect of this change and determine its contribution to CO turndown behaviour. The model combustor study uses the same CRN, and varies the parameters simultaneously to mimic their change as an engine moves through its steady-state power curve. The latter study thus elucidates the difference in CO turndown behaviour when all operating conditions are coupled, as they are in practical engines. The results of this study aim to demonstrate the parameters that are key for optimising and improving CO turndown.


Author(s):  
Adele Nasti

Abstract Secondary air system seals are crucial in aero engine design as they have a direct impact on specific fuel consumption. Their behavior is affected by several aspects of the physics of the system: the air system, the engine thermal physics, the effect of flight loads and several other effects. As a consequence, their design is a complex and iterative process, which is highly dependent on the location of the seal in the engine, on the system requirements and on the system behavior. This paper describes a methodology for multi-disciplinary assessment of secondary air system seals within an engine environment and supports standard seal design, trade-off studies on novel concepts and system-level optimization. Defining the seal design intent for a specific engine location in the form of objectives, it is possible to embed process automation into traditionally manual multi-disciplinary design processes. This allows transforming modelling and simulation tools, which typically provide predictions for a specific seal design over reference cycles, into design and optimization tools, which can provide the optimum seal design for a specific set of requirements. This approach provides predictive models of both seal performance and performance degradation and is capable of taking into account all sources of variation, for instance manufacturing variations or engine operating conditions, delivering a robust design, specific to the engine location. The methodology enables a holistic approach to system and sub-system design and provides a deeper understanding of the impact of the seal onto system and of the system onto the seal, allowing optimization of the overall solution and informing the business case for introduction of different sealing strategies. Examples of the application of this methodology are provided for both labyrinth seals and leaf seals.


Author(s):  
Nigel Bester ◽  
Andy Yates

The performance implications of operating on Synthetic-Paraffinic Kerosene (SPK) were investigated using a RR-Allison T63-A-700 Model 250-C18 B gas turbine and compared to conventional Jet A-1. The SPK was aromatic–free and possessed a greater hydrogen/carbon ratio than petroleum derived Jet A-1. The variation in aromatic content had several implications with respect to soot and NOx emissions. Reduced aromatics also implied a reduction in the radiative heat transfer to the combustor liner. A simple model was used to explore the effect of H/C ratio on the adiabatic flame temperature, the combustor exit temperature and the engine efficiency via the impact on the gas properties and these were compared to the experimental data. It was found that operation with SPK changed directionally toward improving energy extraction via a turbine and an overall efficiency gain of about 1.2% was attained with operation on SPK through increased combustion efficiency, a reduction in liner pressure loss and an improvement in the combustion products properties. A modified combustion liner was fitted to enable the thermal loading on the combustor liner to be investigated and the expected trend with the SPK fuel was confirmed and quantified.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Harpreet Kaur Aasi ◽  
Manish Mishra

Abstract Cross-flow three-fluid plate-fin heat exchanger is analyzed under both steady-state and transient conditions with a nonuniform inlet temperature of all the three fluids. The influence of the longitudinal heat conduction and axial dispersion in the separating sheets and three fluids, respectively, is also considered. Five different combinations (modes) of temperature nonuniformity in the three fluids have been considered and compared for the performance. An important phenomenon of temperature cross between/among the fluids has been observed and presented for certain modes of temperature nonuniformity and operating conditions. The effect in the performance has been presented on the basis of mean exit temperature and deterioration factor. Implicit finite difference technique has been used for the numerical solution. The heat exchanger's performance is found to be dependent on the mode of temperature nonuniformity, number of transfer units, and the operating parameters.


Author(s):  
Adel Mansour ◽  
Michael A. Benjamin

Single injector, high pressure, rig evaluation of the prototype Parker macrolaminate dual fuel premixer (previously tested at NETL, see Mansour et al., 2001) [1] with pressure swirl macrolaminate atomizers was conducted under simulated engine operating conditions running on No. 2 diesel fuel (DF2). Emissions, oscillations and lean blowout (LBO) performance on liquid fuel at high, part and no load operating points (pressures of 160, 100, 120 psig, and inlet temperatures of 690, 570, 590°F, respectively) and various pressure drops (ΔP/P) and air fuel ratio conditions were investigated. The results indicate that the Parker premixer design has the potential to reduce the DF2 NOX emission to below 15 ppmv, 15% O2. At simulated high load conditions with a nominal flame temperature (TPZ) of 2700°F, the NOX and CO emissions are approximately 10 and 2.5 ppmv at 15% O2, respectively. These results compare extremely favorable to existing commercially available premixer technologies tested under similar rig operating conditions. More importantly, the NOX yield for the Parker Macrolaminate premixer appears to be independent of operating conditions (from high to no load and various pressure drop conditions). Variations in combustor pressure, inlet temperature (T2) and residence time (τ) or pressure drop (ΔP/P) does not seem to have an effect on the formation of NOX. According to Leonard and Stegmaier (1993) [2], insensitivity of NOX formation to operating conditions is a good indication of high degree of premixing. Additionally, the premixer NOX data is only 1 to 2 ppmv higher than the jet stirred reactor (JSR) results (ran at T2 = 661°F, PCD = 14.7 psi and TPZ = 2762°F with similar DF2) of Lee et al., 2001 [3], further confirming the quality of premixing achieved. Combustion driven oscillations was not investigated by tuning the rig so that oscillations would not be a factor.


Author(s):  
Jeffrey Goldmeer ◽  
Venkat Tangirala ◽  
Anthony Dean

A key application for a Pulse Detonation Engine concept is envisioned as a hybrid engine, which replaces the combustor in a conventional gas turbine with a Pulse Detonation Combustor (PDC). A limit cycle model, based on quasi 1-D, unsteady Computational Fluid Dynamics (CFD) simulations, was developed to estimate the performance of a pressure-rise PDC in a hybrid engine to power a subsonic engine core. The parametric space considered for simulations of the PDC operation includes the mechanical compression or the flight conditions that determine the inlet pressure and the inlet temperature conditions, fill fraction and purge fraction. The PDC cycle process time scales including overall operating frequency were determined via limit-cycle simulations. The methodology for estimation of performance of the PDC considers the unsteady effects of PDC operation. These metrics include a ratio of time-averaged exit total pressure to inlet total pressure and a ratio of mass-averaged exit total enthalpy to inlet total enthalpy. This information can be presented as a performance map for the PDC, which was then integrated into a systems-level cycle analysis model, using Gate-Cycle, to estimate the propulsive performance of the hybrid engine. Three different analyses were performed. The first was a validation of the model against published data for specific impulse. The second examined the performance of a PDC versus a traditional Brayton cycle for a fixed combustor exit temperature; the results show an increased efficiency of the PDC relative to the Brayton cycle. The third analysis performed was a detailed parametric study varying engine conditions to examine the performance of the hybrid engine. The analysis has shown that increasing the purge fraction, which can reduce the overall PDC exit temperature, can simultaneously provide small increases in overall system efficiency.


Author(s):  
Petter Egil Ro̸kke ◽  
Johan E. Hustad ◽  
Nils A. Ro̸kke ◽  
Ole Birger Svendsgaard

A challenging issue in the gas turbine industry is to develop a practical dual fuel (DF), dry low emission (DLE) combustion system. Especially for the onshore-based power generation systems, and liquid DLE for aeroderivative engines used for marine propulsion. A novel mid-size (3MW) gas turbine is being developed mainly targeted for marine propulsion, where a dual fuel DLE combustion system aiming at single digit NOx emission figures has been explored. As a part of this development, the present technology available from different gas turbine manufacturers has been surveyed. Status of the different techniques applied in dual fuel DLE combustors today and their achievements are presented, including the available information on fuel injectors, cooling schemes, combustion air distribution, noise control and combustor performance. The techniques utilized and explained are such as flame temperature control (water/steam injection), staged combustion, lean premixing and lean prevaporized premixing, rich-quench-lean-burning (RQLB) and catalytic combustion. These are also documented for the different concepts commercially available, describing both advantages and drawbacks. Conclusions are made towards the dominating trends for the different parameters mentioned above, and how they affect the final combustor design. A survey of the dominating parameters for low emission combustion systems is presented.


Sign in / Sign up

Export Citation Format

Share Document