Steady and Transient Behavior of Cross-Flow Three-Fluid Heat Exchanger With Temperature Nonuniformity in All the Fluids—A Detailed Investigation

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Harpreet Kaur Aasi ◽  
Manish Mishra

Abstract Cross-flow three-fluid plate-fin heat exchanger is analyzed under both steady-state and transient conditions with a nonuniform inlet temperature of all the three fluids. The influence of the longitudinal heat conduction and axial dispersion in the separating sheets and three fluids, respectively, is also considered. Five different combinations (modes) of temperature nonuniformity in the three fluids have been considered and compared for the performance. An important phenomenon of temperature cross between/among the fluids has been observed and presented for certain modes of temperature nonuniformity and operating conditions. The effect in the performance has been presented on the basis of mean exit temperature and deterioration factor. Implicit finite difference technique has been used for the numerical solution. The heat exchanger's performance is found to be dependent on the mode of temperature nonuniformity, number of transfer units, and the operating parameters.

Author(s):  
Harpreet Kaur Aasi ◽  
Manish Mishra

Abstract A typical three-fluid cross-flow heat exchanger with nonuniform inlet temperature in the central (hot) fluid is considered for the present analysis. Steady and transient state behavior of the heat exchanger is observed for four different temperature nonuniformity models along with step excitation in inlet temperature of the central fluid. Longitudinal heat conduction in the separating walls and the effect of fluid back-mixing along with axial dispersion effect are considered within the fluids with constant thermophysical fluid properties. The solution of governing equations has been obtained using implicit finite difference scheme. Temperature distribution over the separating walls has been depicted providing a clear view of the thermal stresses generated in separating walls. The performance for all the four cross-flow arrangements has been analyzed by comparing that with and without nonuniform conditions. It is found that the nonuniformity in inlet temperature has an adverse effect on the performance of heat exchanger.


2021 ◽  
Vol 39 (4) ◽  
pp. 1225-1235
Author(s):  
Ajay K. Gupta ◽  
Manoj Kumar ◽  
Ranjit K. Sahoo ◽  
Sunil K. Sarangi

Plate-fin heat exchangers provide a broad range of applications in many cryogenic industries for liquefaction and separation of gasses because of their excellent technical advantages such as high effectiveness, compact size, etc. Correlations are available for the design of a plate-fin heat exchanger, but experimental investigations are few at cryogenic temperature. In the present study, a cryogenic heat exchanger test setup has been designed and fabricated to investigate the performance of plate-fin heat exchanger at cryogenic temperature. Major parameters (Colburn factor, Friction factor, etc.) that affect the performance of plate-fin heat exchangers are provided concisely. The effect of mass flow rate and inlet temperature on the effectiveness and pressure drop of the heat exchanger are investigated. It is observed that with an increase in mass flow rate effectiveness and pressure drop increases. The present setup emphasis the systematic procedure to perform the experiment based on cryogenic operating conditions and represent its uncertainties level.


Author(s):  
Suneel Nagar ◽  
Ajay Singh ◽  
Deepak Patel

The objective of this study is to provide modern analytical and empirical tools for evaluation of the thermal-flow performance or design of air-cooled heat exchangers (ACHE) and cooling towers. This review consist various factors which effect the performance of ACHE. We introduced systematically to the literature, theory, and practice relevant to the performance evaluation and design of industrial cooling. Its provide better understanding of the performance characteristics of a heat exchanger, effectiveness can be improved in different operating conditions .The total cost of cycle can be reduced by increasing the effectiveness of heat exchanger.


Author(s):  
B. Mathew ◽  
H. Hegab

This paper deals with the effect of axial heat conduction on the hot and cold fluid effectiveness of a balanced parallel flow microchannel heat exchanger. The ends of wall separating the fluids are subjected to Dirichlet boundary condition. This leads to heat transfer between the microscale heat exchanger and its surroundings and thereby leading to axial heat conduction through the wall separating the fluids. Three one dimensional energy equations were formulated, one for each of the fluids and one for the wall. These equations were solved using finite difference method. The effectiveness of the fluids depends on the NTU, axial heat conduction parameter, and the temperature of the ends of the wall separating the fluids. With decrease in temperature of the end wall at the inlet section of the fluids, while keeping the temperature of the other end wall constant, the effectiveness of the hot and cold fluid increased and decreased, respectively. When the temperature at the ends of the wall separating the heat exchanger is average of the inlet temperature of the fluids then there is no axial heat conduction through the heat exchanger. The effectiveness of a counter flow microchannel heat exchanger is better than that of a parallel flow microchannel heat exchanger subjected to similar operating conditions, i.e. axial heat conduction parameter and end wall temperatures.


1995 ◽  
Vol 117 (4) ◽  
pp. 859-864 ◽  
Author(s):  
S. K. Das ◽  
B. Spang ◽  
W. Roetzel

Experiments on the transient behavior of two welded plate heat exchangers with identical construction but different numbers of plates have been carried out under different operating conditions. The temperature response on both sides following a step change in inlet temperature on one side has been compared to a theoretical model. The model takes the effects of flow maldistribution within the channels and between channels into account by introducing a dispersion term in the energy equation. The phase lag due to different flow path lengths between inlet or outlet of the heat exchanger and inlet or outlet of the individual channels are also taken into account. Heat conduction through the plates in the main flow direction of the fluids can be neglected for the exchangers under consideration. The model is validated by the experiments. It is found that the dispersion model considered gives a better simulation than the conventional plug flow model. From the experiments the effects of NTU, heat capacity rate ratio, and number of plates were also determined. This demonstrates the whole spectrum of dynamic behavior of plate heat exchangers. To suggest a proper control strategy for such heat exchangers, the parameters of conventional first and second-order systems with delay period have been determined from the results of the experiments and the theoretical model.


Author(s):  
Randall D. Manteufel ◽  
Daniel G. Vecera

Recent experimental work characterized the performance of a unique cross-flow heat exchanger design for application of cooling compressor bleed air using liquid jet fuel before it is consumed in the gas turbine combustor. The proposed design has micro-channels for liquid fuel and cools air flowing in passages created using rows of intermittent fins. The design appears well suited for aircraft applications because it is compact and light-weight. A theoretical model is reported to be in good agreement with experimental measurements using air and water, thus providing a design tool to evaluate variations in the heat exchanger dimensions. This paper presents an evaluation of the heat exchanger performance with consideration of uncertainties in both model parameters and predicted results. The evaluation of the design is proposed to be reproduced by students in a thermal-fluids design class. The heat exchanger performance is reevaluated using the effectiveness–NTU approach and shown to be consistent with the method reported in the original papers. Results show that the effectiveness is low and in the range of 20 to 30% as well as the NTU which ranges from 0.25 to 0.50 when the heat capacity ratio is near unity. The thermal resistance is dominated by the hot gas convective resistance. The uncertainties attributed to fluid properties, physical dimensions, gas pressure, and cold fluid flow rate are less significant when compared to uncertainties associated with hot fluid flow rate, hot fluid inlet temperature, cold fluid inlet temperature, and convective correlation for gas over a finned surface. The model shows which heat transfer mechanisms are most important in the performance of the heat exchanger.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5489
Author(s):  
Karthik Silaipillayarputhur ◽  
Tawfiq Al-Mughanam

All process industries involve the usage of heat exchanger equipment and understanding its performance during the design phase is very essential. The present research work specifies the performance of a pure cross flow heat exchanger in terms of dimensionless factors such as number of transfer units, capacity rate ratio, and heat exchanger effectiveness. Steady state sensible heat transfer was considered in the analysis. The matrix approach that was established in the earlier work was used in the study. The results were depicted in the form of charts, tables, and performance equations. It was observed that indeterminately increasing the number of transfer units past a threshold limit provided very marginal improvement in the performance of a pure cross flow heat exchanger. Likewise, flow pattern in a heat exchanger is usually assumed either as mixed or unmixed. However, due to various operating conditions, partially mixed conditions do exist. This work considers partially mixed conditions in the tube side of the heat exchanger. The correction factor for heat exchanger effectiveness was developed to accommodate partially mixed flow conditions in the pure cross flow heat exchanger.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat Sammakia

Heat exchangers are important facilities that are widely used in heating, ventilating, and air conditioning (HVAC) systems. For example, heat exchangers are the primary units used in the design of the heat transfer loops of cooling systems for data centers. The performance of a heat exchanger strongly influences the thermal performance of the entire cooling system. The prediction of transient phenomenon of heat exchangers is of increasing interest in many application areas. In this work, a dynamic thermal model for a cross flow heat exchanger is solved numerically in order to predict the transient response under step changes in the fluid mass flow rate and the fluid inlet temperature. Transient responses of both the primary and secondary fluid outlet temperatures are characterized under different scenarios, including fluid mass flow rate change and a combination of changes in the fluid inlet temperature and the mass flow rate. In the ε-NTU (number of transfer units) method, the minimum capacity, denoted by Cmin, is the smaller of Ch and Cc. Due to a mass flow rate change, Cmin may vary from one fluid to another fluid. The numerical procedure and transient response regarding the case of varying Cmin are investigated in detail in this study. A review and comparison of several journal articles related to the similar topic are performed. Several sets of data available in the literatures which are in error are studied and analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document