Optimization of an Additively Manufactured U-Bend Channel Using A Surrogate-Based Bayesian Method

2021 ◽  
Author(s):  
Shinjan Ghosh ◽  
Sudeepta Mondal ◽  
Ryan Wardell ◽  
Erik Fernandez ◽  
Jayanta S. Kapat ◽  
...  

Abstract CFD-based design optimization of turbulent flow scenarios is usually computationally expensive due to requirement of high-fidelity simulations. Previous studies prove that one way to reduce computational resource usage is to employ Machine Learning/Surrogate Modeling approaches for intelligent sampling of data points in the design space and is also an active area of research, but lacks enough experimental validation. Such a method has been used to optimize the shape of a U-bend channel for the minimization of pressure drop. U-bends are an integral part of serpentine cooling channels inside gas turbine blades but also contribute to total pressure drop by more than 20%. Reducing this pressure loss can help in more efficient cooling at low pumping power. A ‘U-bend’ or 180-degree bend shape has been used from literature, and a 16-dimensional design space has been created using parametrized spline curves, which creates a variety of shapes inside a given bounding box. A Latin Hypercube Sampling (LHS) was carried out for populating the initial design space with output data from the CFD simulation. After training a surrogate model on this data set, Bayesian updates were used to search for an optimum using an exploration vs exploitation approach. The resulting optimum shape showed that pressure drop was lowered by almost 30%, when compared to the baseline. The aim of this study is to experimentally validate this method using 3D printed models of the baseline and optimum channels respectively. Pressure taps placed across stream-wise locations on these channels helped to create a pressure profile for turbulent flow at a Reynolds number of 17000, for comparison to CFD results.

Author(s):  
Muhammad Ansab Ali ◽  
Tariq S. Khan ◽  
Saqib Salam ◽  
Ebrahim Al Hajri

To minimize the computational and optimization time, a numerical simulation of 3D microchannel heat sink was performed using surrogate model to achieve the optimum shape. Latin hypercube sampling method was used to explore the design space and to construct the model. The accuracy of the model was evaluated using statistical methods like coefficient of multiple determinations and root mean square error. Thermal resistance and pressure drop being conflicting objective functions were selected to optimize the geometric parameters of the microchannel. Multi objective shape optimization of design was conducted using genetic algorithm and the optimum design solutions are presented in the Pareto front. The application of the surrogate methods has predicted the performance of the heat sink with the sufficient accuracy employing significantly lower computational resources.


Author(s):  
Kwang-Jin Choi ◽  
Jin-Hyuk Kim ◽  
Kwang-Yong Kim

This paper presents a design optimization of an axial compressor with NASA Rotor 37 and five circumferential casing grooves for enhancement of stall margin. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for the flow analyses. The validation of the numerical results is performed in comparison with experimental data for pressure ratio and adiabatic efficiency. The Latin-hypercube sampling as design-of-experiments is used to generate the twelve design points within the design space. A stall margin parameter is considered as an objective function with two design variables defining the geometry of the circumferential casing grooves. The radial basis neural network method employed as a surrogate model for the design optimization of the circumferential casing grooves is trained on the numerical solutions by carrying out leave-one-out cross-validation for the data set. The results show that the stall margin of the optimum shape is enhanced considerably by the design optimization compared to the cases with smooth casing and the reference grooves.


2011 ◽  
Vol 18 (6) ◽  
pp. 491-502 ◽  
Author(s):  
Andrew Mintu Sarkar ◽  
M. A. Rashid Sarkar ◽  
Mohammad Abdul Majid

2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


Author(s):  
Farrokh Zarifi-Rad ◽  
Hamid Vajihollahi ◽  
James O’Brien

Scale models give engineers an excellent understanding of the aerodynamic behavior behind their design; nevertheless, scale models are time consuming and expensive. Therefore computer simulations such as Computational Fluid Dynamics (CFD) are an excellent alternative to scale models. One must ask the question, how close are the CFD results to the actual fluid behavior of the scale model? In order to answer this question the engineering team investigated the performance of a large industrial Gas Turbine (GT) exhaust diffuser scale model with performance predicted by commercially available CFD software. The experimental results were obtained from a 1:12 scale model of a GT exhaust diffuser with a fixed row of blades to simulate the swirl generated by the last row of turbine blades five blade configurations. This work is to validate the effect of the turbulent inlet conditions on an axial diffuser, both on the experimental front and on the numerical analysis approach. The object of this work is to bring forward a better understanding of velocity and static pressure profiles along the gas turbine diffusers and to provide an accurate experimental data set to validate the CFD prediction. For the CFD aspect, ANSYS CFX software was chosen as the solver. Two different types of mesh (hexagonal and tetrahedral) will be compared to the experimental results. It is understood that hexagonal (HEX) meshes are more time consuming and more computationally demanding, they are less prone to mesh sensitivity and have the tendancy to converge at a faster rate than the tetrahedral (TET) mesh. It was found that the HEX mesh was able to generate more consistent results and had less error than TET mesh.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1295
Author(s):  
Anghong Yu ◽  
Chuanzhen Wang ◽  
Haizeng Liu ◽  
Md. Shakhaoath Khan

Three products hydrocyclone screen (TPHS) can be considered as the combination of a conventional hydrocyclone and a cylindrical screen. In this device, particles are separated based on size under the centrifugal classification coupling screening effect. The objective of this work is to explore the characteristics of fluid flow in TPHS using the computational fluid dynamics (CFD) simulation. The 2 million grid scheme, volume fraction model, and linear pressure–strain Reynolds stress model were utilized to generate the economical grid-independence solution. The pressure profile reveals that the distribution of static pressure was axisymmetric, and its value was reduced with the increasing axial depth. The maximum and minimum were located near the tangential inflection point of the feed inlet and the outlets, respectively. However, local asymmetry was created by the left tangential inlet and the right screen underflow outlet. Furthermore, at the same axial height, the static pressure gradually decreased along the wall to the center. Near the cylindrical screen, the pressure difference between the inside and the outside cylindrical screen dropped from positive to negative as the axial depth increased from −35 to −185 mm. Besides, TPHS shows similar distributions of turbulence intensity I, turbulence kinetic energy k, and turbulence dissipation rate ε; i.e., the values fell with the decrease in axial height. Meanwhile, from high to low, the pressure values are distributed in the feed chamber, the cylindrical screen, and conical vessel; the value inside the screen was higher than the outer value.


Sign in / Sign up

Export Citation Format

Share Document