Centrifugal Compressor Stage Efficiency and Rotor Stiffness Augmentation via Artificial Neural Networks

2021 ◽  
Author(s):  
Andrea Agnolucci ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Lorenzo Toni ◽  
Angelo Grimaldi ◽  
...  

Abstract Centrifugal compressor stages with high rotor stiffness (i.e. impeller hub-to-outer-diameter ratio) may represent a crucial element to cope with tight rotordynamic requirements and constraints that are needed for certain applications. On the other hand, high-stiffness has a detrimental effect on the aerodynamic performance. Thus, an accurate design and optimization are required to minimize the performance gap with respect to low-stiffness stages. This paper shows a redesign and optimization procedure of a centrifugal compressor stage aimed at increasing the impeller stiffness while keeping high aerodynamic performance. Two different optimization steps are employed to consider a wide design space while keeping the computational cost as low as possible. At first the attention is focused on the impeller only, then the diffuser and the return channel are taken into account. The multi-objective and multi-operating point optimization makes use of artificial neural networks (ANNs) as a surrogate model to obtain the response surfaces. RANS calculations are carried out using the TRAF code and are employed to create the training dataset. Once the ANN has been trained, an optimization strategy is used to find the constrained optimum geometries for the impeller and the static components. The optimized high-stiffness stage is finally compared to the low-stiffness one to assess its applicability.

Author(s):  
Chaolei Zhang ◽  
Qinghua Deng ◽  
Zhenping Feng

This paper describes the aerodynamic redesign and optimization of a typical single stage centrifugal compressor, in which the total pressure ratio was improved from the original 4.0 to final 5.0 with the restrictions of keeping the impeller tip diameter, the design rotational speed and the design mass flow rate unchanged. Firstly the backsweep angle and the outlet blade height of the impeller were adjusted and the vaned diffuser was redesigned. Then a sensitivity analysis of the aerodynamic performance correlated to the primary redesign centrifugal compressor stage with respect to the chosen redesign variables was conducted, according to the parameterized results of the impeller and the vaned diffuser. Secondly the impeller and the vaned diffuser were optimized respectively under the stage environment at the design operation condition to improve the stage isentropic efficiency by using a global optimization method which coupled Evolutionary Algorithm (EA) and Artificial Neural Network (ANN), provided by the commercial software NUMECA DESIGN-3D. Subsequently the detailed performance maps of the centrifugal compressor stage corresponding to the primary redesign configuration and the optimum configuration were presented by Computational Fluid Dynamics (CFD) simulation. Finally the flow fields correlated to the centrifugal compressor configurations before and after optimization at the design operation condition were also compared and analyzed in detail. As a result the design target was achieved after the primary redesign, as a 2.7% gain in stage efficiency and a 3.6% increase in stage pressure ratio were obtained when compared with the primary redesign configuration after optimization. Moreover, the aerodynamic performance of the optimum configuration at the off-design operation conditions was also improved.


Author(s):  
A. Panizza ◽  
R. Valente ◽  
D. Rubino ◽  
L. Tapinassi

The goal of the present study is to quantify the uncertainty in the aerodynamic performance of a centrifugal compressor stage with curvilinear impeller blades, due to impeller manufacturing variability. Impellers with curvilinear element blades allow a greater control of secondary flows with respect to impellers having ruled blades. High flow coefficient impellers for centrifugal compressors exhibit larger secondary flow than medium or low flow coefficient impellers, due to the stronger curvature of the flow path and the larger blade height for the same external diameter. Thus curvilinear blade impellers allow to improve the efficiency and range of high flow coefficient centrifugal compressor stages. As the design of these impellers is more complex than the design of ruled blade impellers, it is important to estimate the impact of the impeller manufacturing variability on the performance of the full stage. Sampling methods are often used in uncertainty propagation studies. However, sampling based approaches require a very large number of samples to have an accurate estimate of the performance uncertainty. 3D steady RANS computations are necessary to capture the impact of the geometric variability of the curvilinear blade impeller, on the stage performance. Thus, sampling methods would require an excessive computational time. In this work, the Polynomial Chaos Expansion (PCE) method with arbitrary probability distributions, implemented in DAKOTA, is used to reduce the number of runs required for the uncertainty quantification study. Manufacturing measurement data are been used to derive the histograms of the main impeller design parameters. From these histograms, numerically-generated orthogonal polynomials are computed for each parameter using a discretized Stieltjes procedure. Stochastic expansion methods such as PCE suffer from the curse of dimensionality, i.e., an exponential increase in the number of runs as the number of uncertain parameters increases. To mitigate the curse of dimensionality, sparse grids are used, which allow a drastic reduction of the number of runs. The results of the study show that the performance variability is small, thus our design with curvilinear element blades is robust with respect to impeller manufacturing variability. Using Sobol indices, we also rank the design parameters according to their impact on the performance variability.


Author(s):  
Yunbae Kim ◽  
Jay Koch

The performance of a centrifugal compressor stage can be seriously affected by inlet flow distortions due to an unsatisfactory inlet configuration and the resulting flow structure. In this study, two radial inlets were designed for a centrifugal compressor stage and investigated numerically using a commercially available 3D viscous Navier-Stokes code. The intent of the design was to minimize the total pressure loss across the inlet while distributing the flow as equally and uniformly as possible to the impeller inlet. For each inlet model, the aerodynamic performance was calculated from the simulation results and then the results from both models were evaluated and compared. The second radial inlet design outperformed the initial design in terms of total pressure loss, flow distortion and uniformity at the impeller inlet. Furthermore, the aerodynamic performance of the second radial inlet was insensitive to a wide range of mass flow rates compared to the initial design due to the distinctive geometric features implemented for the second inlet design.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document