Compressor Map Corrections for Highly Non-Linear Fluid Properties

2021 ◽  
Author(s):  
Mark Anderson

Abstract Turbomachinery systems are often subject to variations in ambient conditions and applied loads in operation. Standard maps (perhaps the most common being pressure ratio verses mass flow for compressors) are usually presented in terms of fixed inflow conditions. To account for changes in performance due to varying inlet conditions, compressors maps are often presented in standardized form where the mass flow and rotational speeds are normalized as a function of the reference condition total pressure and temperature. These methods are very widely used, particularly in the turbo charger industry. With these normalized maps, the actual performance of a compressor in a given environment can be deduced simply and easily with very reasonable accuracy in most cases. The underlaying assumption of this conventional normalization process is that the fluid behaves as a perfect gas. While this is usually sufficient for air compressors, the method is not viable where the fluid properties are not near perfect gas conditions, which is certainly the case for supercritical applications. The highly variable fluid properties near the critical point, and the challenges they present in design, have been well documented in the literature. The two most critical properties to consider in the design process are the density and the speed of sound. The density determines the volumetric flow for a given mass flow and this in turn determines the incidence angle, a primary driver of performance. The speed of sound directly affects the range of the compressor via choking. Choking range can be further complicated by the fact that under certain conditions, the choked state can be reached at Mach numbers less than one. While rare, this situation can occur when the inflow conditions are found close to the liquid side of the saturation dome. To account for these effects, a new method is proposed to generate normalized maps of performance that can be used to determine actual performance of a wide range of inlet conditions for highly non-linear thermodynamic properties. Although not as simple as the conventional perfect gas method that can be applied in a “back-of-the-envelope” style, the new method can be applied very rapidly using a spreadsheet-based method directly calling high fidelity NIST thermodynamic models. The end result of this tool is that a compressor map that has been painstakingly generated with testing or CFD can be applied to any inlet condition and the range and performance predicted very rapidly with high accuracy.

Author(s):  
S. K. Roberts ◽  
S. A. Sjolander

Many gases, including carbon dioxide and argon, have been considered as alternatives to air as working fluids in a number of design studies for closed and semi-closed gas turbine engines. In many of these studies, it has been assumed that if the gas constant R and specific heat ratio (isentropic exponent) γ are included in the speed and flow parameters, the compressor map or turbine characteristic is applicable to other working fluids. However, similarity arguments show that the isentropic exponent itself is a criterion of similarity and that the turbomachinery characteristics, even when appropriately non-dimensionalized, will in principle vary as the γ of the working fluid varies. This paper examines the effect of γ on turbomachinery characteristics, mainly in terms of compressors. The performance of a centrifugal compressor stage was measured using air (γ = 1.4), CO2 (γ = 1.29), and argon (γ = 1.67). For the same values of the non-dimensional speed and mass flow, the pressure ratio, the efficiency, and the choking mass flow were found to be significantly different for the three test gases. The experimental results have been found to be consistent with a CFD analysis of the impeller. Finally, it is shown that the changes in performance can be predicted reasonably well with simple arguments based mainly on one-dimensional isentropic flow. These arguments form the basis for correction procedures that can be used to project compressor characteristics measured for one value of γ to those for a gas with a different value.


2014 ◽  
Vol 496-500 ◽  
pp. 931-934
Author(s):  
Zhi Cheng Huo ◽  
Qi Shun Sun ◽  
Feng Jun Qi ◽  
Guo Bao Ding

For the problems like discreteness, tolerance, non-linear of the parts, acquiring the fault knowledge of analog system in electric equipment is hard. This method realized the process of KA automatization through the combination of PSPICE software and C language and taking command lines as combining site. Using the batch file, the programs will form some topological information and parameter information about the fault states of a circuit system each time. The result of a experiment about an Basic Transistor Amplifier circuit proves its feasibility.


1989 ◽  
Vol 203 ◽  
pp. 251-272 ◽  
Author(s):  
Guido Buresti ◽  
Claudio Casarosa

The equations of the steady, adiabatic, one-dimensional flow of an equilibrium mixture of a perfect gas and incompressible particles, in constant-area ducts with friction, are derived taking into account the effects of gravity and of the finite volume of the particles. As is the case for a pure gas, the mixture is shown to be subject to the phenomenon of choking, and the possibility of an adiabatic heating of the mixture in a subsonic expansion is also theoretically predicted for certain flow inlet conditions. The model may be used to approximately describe the conditions existing in portions of volcanic conduits during the Plinian phases of explosive eruptions. Some results of the numerical integration of the equations for a typical application of this type are briefly discussed, thus showing the potential of the model for carrying out rapid analyses of the influence of the main geometrical and flow parameters describing the problem. A non-volcanological application is also analysed to illustrate the possibility of the adiabatic heating of the mixture.


2020 ◽  
Vol 9 (4) ◽  
pp. 375-387
Author(s):  
Amit Parmar ◽  
Rakesh Choudhary ◽  
Krishna Agarwal

The present study shows the impacts of Williamson fluid with magnetohydrodynamics flow containing gyrotactic microorganisms under the variable fluid property past permeable stretching sheet. Variable Prandtl number, mass Schmidt number, and gyrotactic microorganisms Schmidt number were all considered. The momentum, energy, mass, and microorganism equations’ governing PDEs are converted into nonlinear coupled ODEs and numerically solved with the bvp4c solver using suitable transformations. The main outcome of this study is that Williamson fluid parameter constantly decreases in velocity profile, however reverse effects can be shown in temperature profile. Also, M parameter and Kp parameter enhance the heat transfer rate, concentration rate and microorganisms boundary layer thickness but declines in momentum boundary layer thickness and velocity profile. The aim of this research is to see how velocity slide, temperature jump, concentration slip, and microorganism slip affect MHD Williamson fluid flow with gyrotactic microorganisms over a leaky surface embedded in spongy medium, with non-linear radiation and non-linear chemical reaction.


Author(s):  
Xia Li ◽  
Qun Chen ◽  
Xi Chen

Due to the peculiar physical properties, supercritical carbon dioxide (sCO2) is considered as a promising working fluid in power generation cycles with high reliability, simple structure and great efficiency. Compared with the general thermal systems, the variable properties of sCO2 make the system models obtained by the traditional modelling method more complex. Besides, the pressure distribution in the system will affect the distribution of the fluid properties, the fluid properties influencing the heat transfer process will produce an impact on the temperature distribution which will in turn affect the pressure distribution through the mass flow characteristics of all components. This contribution introduces the entransy-based power flow method to analyze and optimize a recompression sCO2 power generation system under specific boundary conditions. About the heat exchanger, by subdividing the heat transfer area into several segment, the fluid properties in each segment are considered constant. Combining the entransy dissipation thermal resistance of each segment and the energy conservation of each fluid in each segment offers the governing equations for the whole heat transfer process without any intermediate segment temperatures, based on which the power flow diagram of the overall heat transfer process is constructed. Meanwhile, the pressure drops are constrained by the mass flow characteristics of each component, and the inlet and outlet temperatures of compressors and turbines are constrained by the isentropic process constraints and the isentropic efficiencies. Combining the governing equations for the heat exchangers and the constraints for turbine and the compressors, the whole system is modeled by sequential modular method. Based on this newly developed model, applying the genetic algorithm offers the maximum thermal efficiency of the system and the corresponding optimal operating variables, such as the mass flow rate of the working fluid in the cycle, the heat capacity rate of the cold source and the recompression mass fraction under the given heat source. Furthermore, the optimization of the system under different boundary conditions is conducted to study its influence on the optimal mass flow rate of the working fluid, the heat capacity of the cold source and the maximum system thermal efficiency. The results proposes some useful design suggestions to get better performance of the recompression supercritical carbon dioxide power generation system.


Author(s):  
Matthias Schuff ◽  
Jannik Reisberg

A flexible UHBR fan is investigated at different flight conditions with a focus on static deflections and aeroelastic stability. Operating points at varying inlet conditions, which are comparable according to the Mach similarity principle, are investigated. However, not all the aerodynamic characteristics remain identical and aerodynamic damping of mode shape vibrations is changed. When steady deformations of the fan blades are taken into account, the deviation between different inlet conditions increases further. This is mainly due to torsional deflections, changing the effective angle of attack and causing a general shift of the compressor map. Even though the subsequent changes in flutter predictions are not severe for most parts of the compressor map, the behavior at the boundaries is sensitive to the real flight condition. As shown, the Mach similarity principle is not suitable for investigating aeroelastic stability throughout the whole flight envelope, especially when the static blade deformation is not neglectable. The reason for this can be found in the complex interaction between dimension-less numbers (Mach, Reynolds), sized values (pressure difference or aerodynamic loading, natural frequency) and their dependency on each other.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Subrata K. Ghosh ◽  
R. K. Sahoo ◽  
Sunil K. Sarangi

A study has been conducted to determine the off-design performance of cryogenic turboexpander. A theoretical model to predict the losses in the components of the turboexpander along the fluid flow path has been developed. The model uses a one-dimensional solution of flow conditions through the turbine along the mean streamline. In this analysis, the changes of fluid and flow properties between different components of turboexpander have been considered. Overall, turbine geometry, pressure ratio, and mass flow rate are input information. The output includes performance and velocity diagram parameters for any number of given speeds over a range of turbine pressure ratio. The procedure allows any arbitrary combination of fluid species, inlet conditions, and expansion ratio since the fluid properties are properly taken care of in the relevant equations. The computational process is illustrated with an example.


Author(s):  
Feng Wang ◽  
Mauro Carnevale ◽  
Luca di Mare ◽  
Simon Gallimore

Computational Fluid Dynamics (CFD) has been widely used for compressor design, yet the prediction of performance and stage matching for multi-stage, high-speed machines remain challenging. This paper presents the authors’ effort to improve the reliability of CFD in multistage compressor simulations. The endwall features (e.g. blade fillet and shape of the platform edge) are meshed with minimal approximations. Turbulence models with linear and non-linear eddy viscosity models are assessed. The non-linear eddy viscosity model predicts a higher production of turbulent kinetic energy in the passages, especially close to the endwall region. This results in a more accurate prediction of the choked mass flow and the shape of total pressure profiles close to the hub. The non-linear viscosity model generally shows an improvement on its linear counterparts based on the comparisons with the rig data. For geometrical details, truncated fillet leads to thicker boundary layer on the fillet and reduced mass flow and efficiency. Shroud cavities are found to be essential to predict the right blockage and the flow details close to the hub. At the part speed the computations without the shroud cavities fail to predict the major flow features in the passage and this leads to inaccurate predictions of massflow and shapes of the compressor characteristic. The paper demonstrates that an accurate representation of the endwall geometry and an effective turbulence model, together with a good quality and sufficiently refined grid result in a credible prediction of compressor matching and performance with steady state mixing planes.


2016 ◽  
Author(s):  
Jan Bartl ◽  
Lars Sætran

Abstract. This is a summary of the results of the fourth Blind test workshop which was held in Trondheim in October 2015. Herein, computational predictions on the performance of two in-line model wind turbines as well as the mean and turbulent wake flow are compared to experimental data measured at NTNU's wind tunnel. A detailed description of the model geometry, the wind tunnel boundary conditions and the test case specifications was published before the workshop. Expert groups within Computational Fluid Dynamics (CFD) were invited to submit predictions on wind turbine performance and wake flow without knowing the experimental results at the outset. The focus of this blind test comparison is to examine the model turbines' performance and wake development up until 9 rotor diameters downstream at three different atmospheric inflow conditions. Besides a spatially uniform inflow field of very low turbulence intensity (TI = 0.23 %) as well as high turbulence intensity (TI = 10.0 %), the turbines are exposed to a grid-generated atmospheric shear flow (TI = 10.1 %). Five different research groups contributed with their predictions using a variety of simulation models, ranging from fully resolved Reynolds Averaged Navier Stokes (RANS) models to Large Eddy Simulations (LES). For the three inlet conditions the power and the thrust force of the upstream turbine is predicted fairly well by most models, while the predictions of the downstream turbine's performance show a significantly higher scatter. Comparing the mean velocity profiles in the wake, most models approximate the mean velocity deficit level sufficiently well. However, larger variations between the models for higher downstream positions are observed. The prediction of the turbulence kinetic energy in the wake is observed to be very challenging. Both the LES model and the IDDES (Improved Delayed Detached Eddy Simulation) model, however, are consistently managing to provide fairly accurate predictions of the wake turbulence.


Sign in / Sign up

Export Citation Format

Share Document