Design and Analysis Software for Propellers

Author(s):  
Rajeevalochanam Prathapanayaka ◽  
Nanjundaiah Vinod Kumar ◽  
Krishnamurthy Settisara Janney ◽  
Hari Krishna Nagishetty

Recent interest in the field of micro and nano scale air vehicles attracted the attention of many researchers all over the world. The challenge associated with these classes of vehicles is to develop efficient miniaturized components. There are different types of micro and nano air vehicles out of which fixed wing micro air vehicle is one of them. Propulsion system for most of the fixed wing MAVs is propeller driven by an electric motor powered by a battery. The endurance of the MAV mainly depends on the performance of these two components. Hence there is a scope to improve the performance of the propeller and motor. Efficient propeller design and its performance analysis are an iterative process and time consuming. In the present study, to ease the process of propeller design and analysis NALPROPELLER code has been developed using MATLAB. This code is based on minimum induced loss theory presented by E.E.Larrabee to generate planform, blade element momentum theory along with Prandtl hub-tip loss model for overall performance analysis and the performance plots could be viewed in the GUI windows. The code consists of three modules namely single airfoil design, multi airfoil design and analysis module. This code is compared with one of the propeller design and analysis code available in the internet JavaProp by Martin Hepperle, which is also based on minimum induced loss method. From literature Eppler 193 airfoil show high lift to drag ratios at low Reynolds numbers [16]. Eppler-193 airfoil is used in the evaluation of propeller performance. A four inch diameter, two bladed, fixed pitch propeller is designed and analysed using this code. The design is compared with one of the design software JavaProp available online as an open source. A poly urethane casting propeller is fabricated based on the design. The performance comparison of the NALPROPELLER code, JavaProp and 3D CFD analysis is presented and discussed.

2021 ◽  
Vol 64 (3) ◽  
pp. 449-454
Author(s):  
G. N. Bogomazova ◽  
M. A. Golovkin ◽  
A. A. Efremov ◽  
O. V. Pavlenko

2006 ◽  
Vol 129 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Maria Vera ◽  
Xue Feng Zhang ◽  
Howard Hodson ◽  
Neil Harvey

This paper presents the second part of an investigation of the combined effects of unsteadiness and surface roughness on an aft-loaded ultra-high-lift low-pressure turbine (LPT) profile at low Reynolds numbers. The investigation has been performed using low- and high-speed cascade facilities. The low- and high-speed profiles have been designed to have the same normalized isentropic Mach number distribution. The low-speed results have been presented in the first part (Zhang, Vera, Hodson, and Harvey, 2006, ASME J. Turbomach., 128, pp. 517–527). The current paper examines the effect of different surface finishes on an aft-loaded ultra-high-lift LPT profile at Mach and Reynolds numbers representative of LPT engine conditions. The surface roughness values are presented along with the profile losses under steady and unsteady inflow conditions. The results show that the use of a rough surface finish can be used to reduce the profile loss. In addition, the results show that the same quantitative values of losses are obtained at high- and low-speed flow conditions. The latter proves the validity of the low-speed approach for ultra-high-lift profiles for the case of an exit Mach number of the order of 0.64. Hot-wire measurements were carried out to explain the effect of the surface finish on the wake-induced transition mechanism.


2001 ◽  
Vol 105 (1045) ◽  
pp. 135-149 ◽  
Author(s):  
M. I. Woods ◽  
J. F. Henderson ◽  
G. D. Lock

Abstract This paper describes power requirements for micro air vehicles, flying in the Reynolds number regime of -lO*. Three flight modes have been researched: fixed wing, rotary wing and flapping wing. For each mode, the literature in the public domain has been reviewed to obtain appropriate lift and drag coefficient data at these low Reynolds numbers. Energy and power requirements for the three flight modes have been calculated and an optimisation procedure has been utilised to evaluate the most efficient flight mode and configuration for a variety of specified missions. The effect of wind-speed on the optimal solution has been examined. It has been discovered that when there is no hover requirement, fixed wing flight is always most energy efficient for the micro air vehicle. However, if there is a hover requirement, the suitability of flapping or rotary wing flight is dependent on the mission profile and ambient windspeed.


2021 ◽  
Vol 13 ◽  
pp. 175682932110556
Author(s):  
D. Funda Kurtulus

The low Reynolds number aerodynamics is important to investigate for micro air vehicle applications. The current paper covers numerical simulations to present the downstream development of the wake patterns and detailed analysis of the vortices generated at the downstream of NACA 0012 airfoil around the critical angle of attack where the instantaneous vortex patterns are oscillatory and differ from the mean vortex pattern for low Reynolds numbers ranging from 1000 to 4000. The instantaneous and mean aerodynamic forces, pressure and skin friction coefficients, and vorticity values are compared in addition to the path of the vortex centers, their longitudinal and lateral spacings, Kármán spacing ratios, and distortion ratios at the wake of the airfoil in regard to the different Reynolds numbers investigated. The streamwise and crosswise velocities of the vortex cores and relative velocities at different transverse locations are also discussed and presented in detail. The correlations between different non-dimensional numbers (St, Re, Ro) are obtained at these low Reynolds numbers investigated.


Author(s):  
Maria Vera ◽  
Xue Feng Zhang ◽  
Howard Hodson ◽  
Neil Harvey

This paper presents the second part of an investigation of the combined effects of unsteadiness and surface roughness on an aft-loaded ultra high lift low pressure turbine (LPT) profile at low Reynolds numbers. The investigation has been performed using low-speed and high-speed cascade facilities. The low speed and the high speed profiles have been designed to have the same normalized isentropic Mach number distribution. The low speed results have been presented in Part 1 of this paper. The current paper examines the effect of different surface finishes on an aft-loaded ultra-high-lift LPT profile at Mach and Reynolds numbers representative of LPT engine conditions. The surface roughness values are presented along with the profile losses under steady and unsteady inflow conditions. The results show that the use of a rough surface finish might reduce the profile loss. In addition, the results show that the same quantitative values of losses are obtained at high and low speed flow conditions. The latter proves the validity of the low speed approach for ultra high lift profiles for the case of an exit Mach number of the order of 0.64. Hot wire measurements were carried out to explain the effect of the surface finish on the wake induced transition mechanism.


2016 ◽  
Vol 8 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Tianhang Xiao ◽  
Zhengzhou Li ◽  
Shuanghou Deng ◽  
Haisong Ang ◽  
Xinchun Zhou

Sign in / Sign up

Export Citation Format

Share Document