Nacelle: Air Intake Aerodynamic Design and Inlet Compatibility

Author(s):  
Jingjing Chen ◽  
Yadong Wu ◽  
Zhonglin Wang ◽  
Anjenq Wang

One of the most challenging operating conditions to be certified for FAR33 & FAR25 requirements is ground crosswind condition. When “Engine” is operated using the designed inlet and nacelle, within the flight envelope, could accommodate inlet separation/distortion resulted from crosswind and high angle-of-attack operating conditions. Inlet flow separation and distortion could trigger fan or core stall, as well as induce high fan and/or engine vibrations. The air induction system or inlet of the engine is designed to provide velocity and pressure distributions with minimum distortion and maximum pressure recovery to the propulsion system. Engine-inlet-airframe compatibility is one of the major tasks required to be evaluated in detail during the engine developing phase. This research is a parametric study of using CFD to evaluate operational characteristics of the air induction system. Comparisons of various inlet designs are made and characterized into three categories, i.e., i) Inlet flow recovery, ii) Inlet flow distortion, iii) Inlet Mach distribution. The objective is to assess the impact of air induction design of turbofan upon inlet compatibility. The current research work includes four parts, i.e., i) A geometry modeling process of nacelle, inlet, wing and fuselage, ii) A meshes generator ICEM, iii) The ANSYS CFX CFD software which could achieves numerical simulation and post-processing, iv) The Matlab platform with the function of coupling all considerations listed above for inlet compatibility optimization, based on genetic algorithm and Kriging agent model. The research introduces the Kriging model and weighting coefficient to optimize total pressure loss coefficient and static pressure recovery coefficient, with the external nacelle flow ignored. Bezier equation was used to fit the optimized curves obtained by changing two control points at the inter surface of nacelle. The wing-mounted model coupled with the nacelles, fuselage and wings was then built to make the assessment of inlet compatibility of air intake system relative to the isolate model. Comparison of aerodynamic performance was then made between the original and optimal nacelle, to show correlation between inlet compatibility and air intake profile.

Author(s):  
Jingjing Chen ◽  
Yadong Wu ◽  
Zhonglin Wang ◽  
Anjenq Wang

The design of air induction system is targeting to balance the internal and external flow characteristics as well as the structure and aerodynamic integrity. An optimized air intake design that providing velocity and pressure distributions with least drag and maximum pressure recovery could end up at the expense of higher inlet flow distortion and lower stability margin. Indeed, design requirements and considerations at different operating conditions, such as takeoff, and high AOA maneuvers, could be significantly different from that of cruise and level flight. One of the most challenged operating conditions to be certified for FAR33 & FAR25 requirements is ground crosswind condition, when “Engine” is operating statically on the ground with high crosswind presented. It could accommodate inlet separation or distortion resulted from crosswind, and triggers fan or core stall, as well as induces high fan and/or engine vibrations. Studies of engine inlet compatibility become one of the major tasks required during the engine developing phase. This research is a parametric study of using CFD to evaluate operational characteristics of the air induction system. Comparisons of various inlet designs are made and characterized into four categories, i.e., i) Inlet pressure loss, ii) Nacelle drag, iii) Inlet flow distortion, and iv) Inlet Mach distribution. The objective is to assess the impact of air induction design of turbofan upon inlet compatibility. The research introduces the Kriging model and weighting coefficients to optimize internal total pressure loss and external drag using the isolated nacelle model. Bezier equation was used to fit the optimized curves obtained by changing several control points of the baseline configuration of nacelle. To study the impact of asymmetric lip on flow separation in ground crosswind condition, the paper built crosswind model which introduce a inlet boundary as fan face. Comparisons are then made between the original and optimal nacelle, to show correlation between inlet compatibility and air intake profile.


Author(s):  
Joachim Kurzke

This paper describes how the fundamental effects of inlet flow distortion on the performance of gas turbines can be evaluated with any engine performance program that employs an integrated parallel compressor model. In this simulation method, both pressure and temperature distortions are quantified with coefficients, which relate the pressure (respectively temperature) in the spoiled sector to the value in the clean sector. In single spool compressor engines, the static pressure at the exit of the clean sector equals that of the distorted sector. This hypothesis does not hold true with multispool compressor engines because the short intercompressor ducts, which often contain struts or vanes, do not allow the mass flow transfer over the sector borders, which would be required for balancing the static pressures. The degree of aerodynamic coupling of compressors in series can be described in the performance simulation program by the simple coupling factor introduced in this paper. There are two fundamentally different reasons for the change in engine performance: First, there is the impact of the flow distortion on the component efficiencies and thus the thermodynamic cycle and second there are performance changes due to the actions of the control system. From the engine system simulation results, it becomes clear why inlet flow distortion has only a minor impact on the thermodynamic cycle if the comparison of the two operating conditions (with clean and distorted inlet flow) is made at the properly averaged engine inlet conditions. For each compressor, the parallel compressor theory yields two operating points in the map, one for the clean sector and one for the spoiled sector. The performance loss due to the distortion is small since the efficiency values in the two sectors are only a bit lower than the efficiency at a comparable operating point with clean inlet flow. However, the control system of the engine can react to the inlet flow distortion in such a way that the thrust delivered changes significantly. This is particularly true if a compressor bleed valve or a variable area nozzle is opened to counteract compressor stability problems. Especially, using recirculating bleed air for increasing the surge margin of a compressor affects the performance of the engine negatively. Two examples show clearly that the pros and cons of recirculating bleed can only be judged with a full system simulation; looking at the surge line improvement alone can be misleading.


Author(s):  
Joachim Kurzke

The main problem with aircraft engine inlet flow distortion is its effect on the stability of the compression system. However, distortion does also influence the performance delivered by the propulsion system. There are two fundamentally different reasons for the change in performance: First there is the impact of the flow distortion on the component efficiencies and thus the thermodynamic cycle and second there are performance changes due to actions of the control system. This paper describes how the fundamental effects of inlet flow distortion on the performance of gas turbines can be evaluated with any engine performance program that employs an integrated parallel compressor model. This sort of simulation is a valuable tool for evaluating the basic effects of complex flow phenomena on the performance of a gas turbine. It delivers fundamentally correct answers since even the most complex flow structures obey the laws of mass and energy conservation and that’s all what the overall system simulation is about. In the parallel compressor model both pressure and temperature distortions are quantified with coefficients which relate the pressure (respectively temperature) in the spoiled sector to the value in the clean sector. In single compressor engines the static pressure at the exit of the clean sector equals that of the distorted sector. This hypothesis does not hold true with multi-compressor engines because the short inter-compressor ducts, which often contain struts or vanes, do not allow the mass flow transfer over the sector borders which would be required for balancing the static pressures. The degree of aerodynamic coupling of compressors in series can be described in the performance simulation program by a coupling factor. From the engine system simulation results it becomes clear why inlet flow distortion has only a minor impact on the thermodynamic cycle if the comparison of the two operating conditions (with clean and distorted inlet flow) is made at the properly averaged engine inlet conditions. For each compressor the parallel compressor theory yields two operating points in the map, one for the clean sector and one for the spoiled sector. The performance loss due to distortion is small since the efficiency values in the two sectors are only a bit lower than the efficiency at a comparable operating point with clean inlet flow. However, the control system of the engine can react to the inlet flow distortion in such a way that the thrust delivered changes significantly. This is particularly true if a compressor bleed valve or a variable area nozzle is opened to counteract compressor stability problems. Especially using re-circulating bleed air to increase the surge margin of a compressor affects the performance of the engine negatively. Two examples show clearly that the pro and cons of re-circulating bleed can only be judged with a full system simulation, looking at the surge line improvement alone can be misleading.


Author(s):  
M. M. Al-Mudhafar ◽  
M. Ilyas ◽  
F. S. Bhinder

The results of an experimental study on the influence of severely distorted velocity profiles on the performance of a straight two-dimensional diffuser are reported. The data cover entry Mach numbers ranging from 0.1 to 0.6 and several inlet distortion levels. The pressure recovery progressively deteriorates as the inlet velocity is distorted.


1983 ◽  
Vol 4 ◽  
pp. 180-187 ◽  
Author(s):  
B. Michel ◽  
D. Blanchet

The problem of a floating ice sheet hitting a structure with a vertical face appears to be a simple one but, in fact, has only been solved for a limited number of cases. Research work on this question usually reports on an indentation coefficient which relates the average pressure on the indenter to the uniaxial crushing strength of the ice. Very few tests have been made in the brittle range of ice failure. In this particular area of study, this paper reports on 27 tests that were conducted in a cold-room water basin where controlled S2floating ice sheets were produced with a surface area of 4 × 4 m, three sides being fully restrained and the other, freely float! no, being submitted to the impact of the moving indenter. All tests were carried out at computed indentation rates varying from 0.017 to 0.34 s-1. In this range this ice would normally be considered to act as a brittle material. The thickness of the ice sheets varied from 1.2 to 9.0 cm and the indenter width from 5 cm to 1 m. Overall, the aspect ratio relating these two parameters could be varied from 0.5 to 83.Results have shown that for aspect ratios <5, there was an important oscillatory effect which caused the formation of pi asti fi ed triangles in front of the indenter, increasing its resistance as it would under ductile conditions. Because of this plastification, an extrusion effect appeared in front of the indenter as the broken ice crystals were blown up and down in front of the fast-moving indenter. The theory of plasticity which gives an indentation coefficient of 2.97 seems to apply in this case. Another mode of failure which occurred with aspect ratios 5 was cleavage in the plane of the ice sheet which also gives a higher indentation coefficient for S2ice, but of the same order of magnitude as previously.For intermediate values of the aspect ratio, between 5 and 20, the theory of elasticity used by Michel (1978) seems to apply well. Shear cracks are first formed on both sides of the square indenter and control the maximum pressure when they propagate inside forming big triangles in front of it.Finally, for aspect ratios ~>20, buckling of the ice occurs, either after or at the same time as the formation of wedges, together with a reduction in the indentation coefficient to a value close to that given by the theory of buckling of a truncated 45° wedge with a hinged edge.


1983 ◽  
Vol 4 ◽  
pp. 180-187 ◽  
Author(s):  
B. Michel ◽  
D. Blanchet

The problem of a floating ice sheet hitting a structure with a vertical face appears to be a simple one but, in fact, has only been solved for a limited number of cases. Research work on this question usually reports on an indentation coefficient which relates the average pressure on the indenter to the uniaxial crushing strength of the ice. Very few tests have been made in the brittle range of ice failure. In this particular area of study, this paper reports on 27 tests that were conducted in a cold-room water basin where controlled S2 floating ice sheets were produced with a surface area of 4 × 4 m, three sides being fully restrained and the other, freely float! no, being submitted to the impact of the moving indenter. All tests were carried out at computed indentation rates varying from 0.017 to 0.34 s-1. In this range this ice would normally be considered to act as a brittle material. The thickness of the ice sheets varied from 1.2 to 9.0 cm and the indenter width from 5 cm to 1 m. Overall, the aspect ratio relating these two parameters could be varied from 0.5 to 83.Results have shown that for aspect ratios <5, there was an important oscillatory effect which caused the formation of pi asti fi ed triangles in front of the indenter, increasing its resistance as it would under ductile conditions. Because of this plastification, an extrusion effect appeared in front of the indenter as the broken ice crystals were blown up and down in front of the fast-moving indenter. The theory of plasticity which gives an indentation coefficient of 2.97 seems to apply in this case. Another mode of failure which occurred with aspect ratios 5 was cleavage in the plane of the ice sheet which also gives a higher indentation coefficient for S2 ice, but of the same order of magnitude as previously.For intermediate values of the aspect ratio, between 5 and 20, the theory of elasticity used by Michel (1978) seems to apply well. Shear cracks are first formed on both sides of the square indenter and control the maximum pressure when they propagate inside forming big triangles in front of it.Finally, for aspect ratios ~>20, buckling of the ice occurs, either after or at the same time as the formation of wedges, together with a reduction in the indentation coefficient to a value close to that given by the theory of buckling of a truncated 45° wedge with a hinged edge.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Jing Gao Sun ◽  
Qin Cao

PTFE (polytetrafluoroethylene) is the fluorinated straight-chain polymer, made by the polymerization of tetrafluoroethylene monomer; it is used widely because of its excellent performance and can be obtained by the polymerization of body, solutions, suspensions, and emulsions. But only the last two are the main ways. This research paper makes simulation based on Polymer Plus. It uses the emulsion polymerization method at background to carry out a semibatch reactor system. Upon the actual production conditions, simulation process under the steady state conditions is used to analyze the effects of the changes on operating conditions; the corresponding dynamic model is created to analyze the impact of the changes of conditions on the entire system. Moreover, the amount of APS which plays an important part in this reaction is discussed for getting the most suitable amount of initiator. Because of less research work on this job, it is so difficult to find the related data from the literature. Therefore, this research will have a great significance for the process of the tetrafluoroethylene emulsion polymerization in the future.


Author(s):  
Hairun Xie ◽  
Yadong Wu ◽  
Anjenq Wang ◽  
Hua Ouyang

Rear mounted engines are widely used in business jet and regional jet applications. It is a “clean wing” design. The engine is mounted behind the wing, so that the inlet/exhaust of nacelle has a minor influence on the flow over the wing. The engine thrust line is close to the fuselage axis. As a result, the asymmetric yaw moment will be smaller when single engine stall occurs. Field experience and historical data have revealed that engine aerodynamic stability and fan aeromechanics are extremely sensitive to the uniformity and steadiness of inlet flow. Engine inlet flow could be distorted and separated at various operating conditions, such as, high ground crosswind, take off, and other high angle of attack (AOA) maneuvers. As a result, strict regulations and requirements were set by certification agencies to assess: i) aircraft maneuver capability, ii) engine operating characteristics, as well as iii) aerodynamics/aeromechanics behaviors and capability, with respect to flow field surrounding the entire propulsion system. Due to the nature of complexity of the flow field at air intake, the inlet compatibility of fuselage mounted engines becomes one of the most complicated & challenged item to meet the FAR33 as well as the FAR25 certification requirements. This research paper discusses the inlet compatibility of rear-mounted aircraft engine with respect to AOA and crosswind under various operating conditions. Models of two installed configurations, which set by relative position of engine to fuselage and wing, were created. At each case, the engine inlet flow field was calculated at various AOA and crosswind conditions. Comparisons of total pressure contours at air intake were made to assess the likelihood of flow separation. The radial and circumferential inlet distortion levels were calculated at the assumed inlet AIP location for each operating condition and installed configuration. Assessments are made based on intensive usage of CFD analysis, and substantiated by test results. The flow field information obtained by CFD calculation reveals a close coupling phenomenon exist among engine installation, AOA and inlet capability. Analytical results were also checked, and the results agreed well with that of the compliant flight tests.


1980 ◽  
Vol 102 (4) ◽  
pp. 762-769 ◽  
Author(s):  
B. F. J. Cossar ◽  
W. C. Moffatt ◽  
R. E. Peacock

Rotating stall in axial compressors consists of regions or cells of retarded flow moving around the annulus relative to the blades. Planar symmetry is destroyed, resulting in stalled blades in part of the annulus and unstalled blades in the remainder. The stall cell moves in the direction opposite to the rotor, relative to the blades, but since the relative speed of propagation is usually less than the rotor speed, the cell is seen to move in the same direction as the rotor from an absolute reference frame. The presence of the stall cells results in a deterioration of compressor performance since the maximum pressure ratio is not achieved in regions of retarded flow. Furthermore, since this self-induced distortion is periodic, the forced frequencies generated may coincide with the natural harmonics of the blading, tending to cause structural damage. This paper describes a series of experiments in which a single-stage, lightly loaded compressor operated under stall-free conditions and with rotating stall, both with uniform inlet flow and with distortions generated by an upstream screen of uniform porosity. Not only was the overall compressor performance determined in the traditional manner, but the distribution of static pressure over the rotor suction and pressure surfaces was measured with high response instrumentation. The rotor pressure profiles measured in both undistorted and distorted flow are presented for operation before and after the onset of rotating stall and the latter are compared with the steady flow results. It is observed that two distinctly different types of rotating stall exist depending upon whether or not an inlet flow distortion is present. These cells differ not only in macroscopic properties—rotational speed, circumferential extent, mass-averaged flow conditions, etc.—but also in detailed flow characteristics as evidenced by the rotor blade static pressure distributions. It is further observed that not all inlet distortion geometries lead to the development of rotating stall.


2020 ◽  
Vol 92 (3) ◽  
pp. 460-471
Author(s):  
Yadav Krishna Kumar Rajnath ◽  
Akshoy Ranjan Paul ◽  
Anuj Jain

Purpose The purpose of air-intake duct used in combat aircrafts is to decelerate the inlet flow and concurrently raise the static pressure recovery at the compressor inlet. Because of side-slip movement during sharp maneuvers of the aircrafts, the airflows ingested into twin air-intake ducts are not same and symmetric at its two inlets but are asymmetric in nature. The asymmetric inlet flow conditions at the twin air-intakes thus caused instabilities and deteriorated aerodynamic performance of aircraft components such as compressors and other downstream components. This study aims to investigate the flow control in a twin air-intake with asymmetric inflows. Design/methodology/approach The continuity and momentum equations are solved with second-order upwind scheme for computing finite-volume method-based unsteady computational fluid dynamics simulation. Findings Performance parameters are deteriorated with the increase of inflow asymmetry in the twin air-intake duct. Slotted synthetic jets are used to manage flow separation, thereby increasing aerodynamic performance of the air-intake. A variety of vortical structures are generated from the rectangular slots, convected downstream of the twin air-intake. The use of slotted synthetic jets increases static pressure recovery by 64 per cent whereas reducing total pressure loss coefficient by 63 per cent, distortion coefficient by 58 per cent and swirl coefficient by 55 per cent which is an indicative of better aerodynamic performance of twin air-intake. Originality/value The study stresses the need of robust flow control technique to improve the performance of combat air-intake system under extreme maneuvering conditions. The results can be useful in designing air-intake satisfying the stealth features for modern combat aircrafts.


Sign in / Sign up

Export Citation Format

Share Document