Effect of Rotor Tip Casing Treatment on the Performance and Stability of a Transonic Axial Compressor

2021 ◽  
Author(s):  
Subbaramu Shivaramaiah ◽  
Mahesh K. Varpe ◽  
Mohammed Afzal

Abstract In a transonic compressor rotor, tip leakage flow interacts with passage shock, casing boundary layer and secondary flow. This leads to increase in total pressure loss and reduction of compressor stability margin. Casing treatment is one of the passive endwall geometry modification technique to control tip leakage flow interaction. In the present investigation effect of rotor tip casing treatment is investigated on performance and stability of a NASA 37 transonic compressor stage. Existing literature reveals, that endwall casing treatment slots i.e., porous casing treatment, axial slots axially skewed slots, circumferential grooves, recirculating casing treatment etc. are able to improve compressor stability margin with penalty on stage efficiency. Turbomachinery engineers and scientists are still focusing their research work to identify an endwall casing treatment configuration with improves both compressor stall margin as well as stage efficiency. Hence in the current work, as an innovative idea, effect of casing treatment slot along rotor tip mean camber line is investigated on NASA 37 compressor stage. Casing treatment slot with rectangular cross-section was created along the rotor tip mean camber line. Four different casing treatment configurations were created by changing number of slots on rotor casing surface. In all four configurations casing treatment slot width and height remains same. Flow simulation of NASA 37 compressor stage was performed with all these four casing treatment configurations. A maximum stall margin improvement of 3% was achieved with a particular slot configuration, but without any increase in compressor stage efficiency.

2021 ◽  
Author(s):  
Subbaramu Shivaramaiah ◽  
Mahesh K. Varpe

Abstract In the present research work, effect of airfoil vortex generator on performance and stability of transonic compressor stage is investigated through CFD simulations. In turbomachines vortex generators are used to energize boundary and generated vortex is made to interact with tip leakage flow and secondary flow vortices formed in rotor and stator blade passage. In the present numerical investigation symmetrical airfoil vortex generator is placed on rotor casing surface close to leading edge, anticipating that vortex generated will be able to disturb tip leakage flow and its interaction with rotor passage core flow. Six different vortex generator configuration are investigated by varying distance between vortex generator trailing edge and rotor leading edge. Particular vortex generator configuration shows maximum improvement of stall margin and operating range by 5.5% and 76.75% respectively. Presence of vortex generator alters flow blockage by modifying flow field in rotor tip region and hence contributes to enhancement of stall margin. As a negative effect, interaction of vortex generator vortices and casing causes surface friction and high entropy generation. As a result compressor stage pressure ratio and efficiency decreases.


Author(s):  
Mingmin Zhu ◽  
Xiaoqing Qiang ◽  
Jinfang Teng

Slot-type casing treatment generally has a great potential of enhancing the operating range for tip-critical compressor rotors, however, with remarkable efficiency drop. Part I of this two-part paper was committed to develop a slot configuration with desired stall margin improvement and minimized efficiency loss. Steady simulation was carried out in a 1.5 transonic axial compressor stage at part design rotating speed. At this rotating speed this compressor stage operated at a subsonic condition and showed a rather narrow operating range, which needed to be improved badly. Flow fields analysis at peak efficiency and near stall point showed that the development of tip leakage vortex and resulting blockage near casing resulted in numerical stall. Three kinds of skewed slots with same rotor exposure and casing porosity were designed according to the tip flow field and some empirical strategies. Among three configurations, arc-curved skewed slot showed minimum peak efficiency drop with considerable stall margin improvement. Then rotor exposure and casing porosity were varied based on the original arc-curved skewed slot, with a special interest in detecting their impact on the compressor stability and overall efficiency. Result showed that smaller rotor exposure and casing porosity leaded to less efficiency drop. But meanwhile, effectiveness of improving compressor stability was weakened. The relation between efficiency drop and stall margin improvement fell on a smooth continuous curve throughout all slots configurations, indicating that the detrimental effect of casing treatment on compressor was inevitable. Flow analysis was carried out for cases of smooth casing and three arc-curved configurations at smooth casing near stall condition. The strength of suction/injection, tip leakage flow behavior and removal of blockage near casing were detailed examined. Larger rotor tip exposure and slots number contributed to stronger injection flow. The loss generated within the mixing process of injection flow with main flow and leakage flow is the largest source of entropy increase. Further loss mechanisms were interpreted at eight axial cuts, which were taken through the blade row and slots to show the increase in entropy near tip region. Entropy distributions manifested that loss generations with smooth casing were primarily ascribed to low-momentum tip leakage flow/vortex and suction surface separation at leading edge. CU0 slot, the arc-curved slots with 50% rotor tip exposure, was capable of suppressing the suction surface separation loss. Meanwhile, accelerated tip leakage flow brought about additional loss near casing and pressure surface. Upstream high entropy flow would be absorbed into the rear portion of slots repeatedly, resulting in further loss.


Author(s):  
Jichao Li ◽  
Feng Lin ◽  
Sichen Wang ◽  
Juan Du ◽  
Chaoqun Nie ◽  
...  

Circumferential single-groove casing treatment becomes an interesting topic in recent few years, because it is a good tool to explore the interaction between the groove and the flow in blade tip region. The stall margin improvement (SMI) as a function of the axial groove location has been found for some compressors, such a trend cannot be predicted by steady high-fidelity CFD simulations. Recent efforts show that to catch such a trend, multi-passage, unsteady flow simulations are needed as the stalling mechanism itself involves cross-passage flows and unsteady dynamics. This indicates a need to validate unsteady numerical simulation results. In this paper, an extensive experimental study of a total of fifteen single casing grooves in a low-speed axial compressor rotor is presented, the groove location varies from 0.4% to 98.3% of axial tip chord are tested. The unsteady pressure data both at casing and at the blade wake with different groove locations are measured and processed, including the movement of trajectory of tip leakage flow, the evolution of unsteadiness of tip leakage flow (UTLF), the unsteady spectrum signature during the stall process, and the outlet unsteady flow characteristic along the span. These data provide a case study for validation of the unsteady CFD results, and may be helpful for further interpretation on the stalling mechanism affected by circumferential casing grooves.


Author(s):  
Yasunori Sakuma ◽  
Toshinori Watanabe ◽  
Takehiro Himeno

Computational analysis has been conducted on the NASA Rotor 37 transonic compressor with various tip clearance gap heights. Using steady rotor-only analysis, the change in overall performance, basic flow characteristics, and near-casing phenomena have been carefully observed. The results have clarified that the peak efficiency of the compressor decreases almost linearly with the increase in gap height. Meanwhile, the stall margin was prone to deterioration in cases of significantly small or significantly large clearance gaps. The peak stall margin was attained when the gap was set to 75% of the original height. Focusing on the flow structures, the tip leakage flow and tip leakage vortex seemed to be dominant loss sources in the case of a large tip clearance gap. On the other hand, trailing edge separation at the blade tip was the major loss source in case of a small tip clearance gap. The difference in the near-casing flow structure also determined the onset process of numerical instability. In case of a large tip clearance gap, the advance of the interface between the main flow and tip leakage flow seemed to cause an accumulation of blockage in the region near the casing, possibly triggering the tip-initiated stall. In the case of a small tip clearance gap, interaction among the wall separation, blade tip trailing edge separation, and shockwave /boundary layer interaction was significant. These phenomena appeared to play a major role in the onset of numerical instability in the blade tip region.


Author(s):  
Dilipkumar B. Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

The performance of an aero-engines to a large extend depends on the performance behavior of axial flow compressors and is restricted by the compressor instabilities like rotating stall and surge. In the present study, attempts have been made to design and develop the bend skewed casing treatment geometries with lower porosities to improve the stable operating range of single stage axial flow compressor. Experimental investigations were undertaken to study the impact of axial position of one of the casing treatment geometry on the single stage transonic axial flow compressor. The transonic compressor used for the current experimental studies has a stage total to total pressure ratio of 1.35, corrected mass flow rate of 22 kg/s at an operating speed of 12930 rpm. The compressor stage steady and unsteady state response for 20%, 40%, 60% and 100% axial chord coverage relative to the rotor tip chord of the bend skewed casing treatment with a porosity of 33% was studied experimentally. The objective was to identify the optimum axial location; which will give maximum improvement in the stall margin with minimal loss of compressor stage efficiency. Through an experimental study it was observed that the axial location of bend skewed casing treatment plays a very crucial role in governing the performance of the transonic compressor. For all the investigated axial coverages, compressor stall margin increases but the optimum performance in terms of stall margin improvement and efficiency gains were observed at 20% and 40% of the rotor chord. This trend shows good agreement with existing published literature. An improvement of 31.7% in the stall margin with an increase in the stage efficiency was obtained at one of the axial coverage. Maximum improvement of 37% in the stall margin above the solid casing was noticed at 60% axial coverage. The stalling characteristics of the compressor stage also changes with the axial positions. In the presence of solid casing the nature of stall was abrupt and stalls cells travels at half the rotor speed. The blade element performance also studied at the rotor exit using pre-calibrated aerodynamic probe.


Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Yanhui Wu

The use of slots and grooves in the shroud over the tips of compressor blades, known as casing treatment, is known as a powerful method to control tip leakage flow through the clearance gap and enhance the flow stability in compressors. This paper present a detailed steady and unsteady numerical studies of the coupled flow through rotor blade passages and two different types of casing treatment for a modern subsonic axial-flow compressor rotor. Particular attention was given to examining the interaction between the tip leakage flow and the casing treatment. In order to validate the multi block model applied in the rotor blade end-wall region, the computational results for the modern subsonic compressor rotor both with and without casing treatment were correlated with available experimental test data for estimation of the global performance. Detailed analyses of the flow visualization at the tip have exposed the different tip flow topologies between the cases with casing treatment and with untreated smooth wall. It was found that the primary stall margin enhancement afforded by the casing treatment is a result of the tip clearance flow manipulation. The repositioning of the tip clearance vortex further towards the trailing edge of the blade passage and delaying the movement of incoming/tip clearance flow interface to the leading edge plane are the physical mechanisms responsible for extending the compressor stall margin.


Author(s):  
Yasunori Sakuma ◽  
Toshinori Watanabe ◽  
Takehiro Himeno ◽  
Dai Kato ◽  
Takeshi Murooka ◽  
...  

The effect of a single circumferential casing groove on the stability enhancement of two different transonic compressors has been examined with CFD analysis. The differences in flow field and stall inception mechanism between two rotors are presented with principal focus on passage blockage and tip leakage flow behavior. Detailed observation showed that the blockage flow which leads the compressor to stall was different between each other. A parametric study conducted with respect to the axial location of the groove has clarified that the effect which groove has on the tip leakage flow behavior changes according to the blade tip loading and the design tip clearance gap at the location where the groove is applied. When the casing treatment was applied to the compressors with different instability mechanism, whether the casing treatment could enhance the stability of compressor or not was not only dependant on the extent of the influence which it had on the flow field but also on whether it could affect the original stall-initiating phenomena at the adequate location.


Author(s):  
Sha Zhang ◽  
Wuli Chu ◽  
Jibo Yang

Abstract In order to increase the stability margin of axial compressor with low efficiency losses, this paper studies the influence of axial short slot casing treatment and its axial position on compressor performance. A transonic axial compressor rotor, NASA rotor37, is taken as the research object, and the solid wall case and three axial slot casing treatments with different axial positions are studied by numerical simulation. The results show that the configuration with a center deviation of 0 (CT _C) has the best effect, with a margin improvement of 7.6% and an efficiency reduction of 0.09%; the configuration with an upstream positioned axial slot (CT_L) is the second, with a margin improvement of 5.4% and an efficiency reduction of 0.28%; the configuration with a downstream positioned axial slot (CT_T) is the worst, with a margin improvement of 3.6% and an efficiency reduction of 0.3%. A shift of the slot in downstream direction is not effective because it only affects the extent of boundary layer separation and has little effect on the development of the tip leakage flow. The upstream positioned axial slot with unsatisfactory effect affects the tip leakage flow trajectory and weakens the radial vortex at the blade tip, but it cannot affect the subsequent development of the leakage vortex. The short slot casing treatment in the central position effectively inhibits the development of the vortex. At the same time, it affects the development of the boundary layer to some extent and ensures the lower efficiency reduction while obtaining better stability margin.


Author(s):  
Ning Ma ◽  
Xi Nan ◽  
Feng Lin

Axial compressors can obtain substantial improvement on stall margin by using axial-slot casing treatments. However, this type of casing treatment usually yields large peak efficiency penalty due to the interaction between the slots and rotor tip region where the tip leakage flow plays an important role. Therefore, as a main factor that influences the peak efficiency, the tip leakage loss was examined in this paper with a variety of slot geometries. Unsteady numerical simulations were performed on both low speed and transonic compressors with axial skewed slot casing treatments with different geometric parameters. In addition, an equation which can be applied to evaluate the tip leakage loss under casing treatment cases was derived from Denton’s leakage mixing model. The leakage loss can be expressed in terms of the cube of the tip leakage flow rate. Combined with the simulation results, the effects of the number, depth and width of the slots on both the leakage loss and peak efficiency deficit were investigated. For the transonic compressor, the impacts of shock wave and its interaction with the tip leakage flow /vortex were assessed as well. Lastly, two axial-slot casing treatments with an isosceles-trapezoid shaped opening were designed to reduce the loss in the rotor tip region. It was shown that the newly designed axial-slot casing treatments were capable of improving the peak efficiency of both compressors.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document