Enhancement of Heat Transfer to an Air Jet Impinging on a Flat Plate
An experimental investigation of the impinging jet cooling from a heated flat plate has been carried out for several Reynolds numbers (Re) and nozzle to plate distances. The present results indicate that the maximum heat transfer occurs from the heated plate at stagnation point and decreases with radial distances for all cases. The maximum value of the stagnation as well as average Nusselt number is found to occur at separation distance, H/D = 6.0 for Re = 55000. An attempt is also made to study effects of nozzle exit configuration on the heat transfer using a sharp edged orifice for same set of Reynolds numbers and nozzle to plate distance. The stagnation Nusselt numbers of sharp orifice jets are found to be enhanced by around 16–21.4% in comparison to that of square edged orifice. However, the enhancement in the average Nusselt number of sharp orifice is found to be in the range of 7–18.9% as compared to the square edged orifice. The maximum enhancement of 18.9% in average Nu is achieved for Re = 55 000 at H/D = 6. Two separate correlations in terms of Nuo, Re, H/D for both square and sharp edged orifice are obtained which will be useful for designing impinging cooling system.