Effect of Fluid Loading on the Performance of Wicked Heat Pipes

Volume 3 ◽  
2004 ◽  
Author(s):  
R. Kempers ◽  
A. Robinson ◽  
C. Ching ◽  
D. Ewing

A study was performed to experimentally characterize the effect of fluid loading on the heat transport performance of wicked heat pipes. In particular, experiments were performed to characterize the performance of heat pipes with insufficient fluid to saturate the wick and excess fluid for a variety of orientations. It was found that excess working fluid in the heat pipe increased the thermal resistance of the heat pipe, but increased maximum heat flux through the pipe in a horizontal orientation. The thermal performance of the heat pipe was reduced when the amount of working fluid was less than required to saturate the wick, but the maximum heat flux through the heat pipe was significantly reduced at all orientations. It was also found in this case the performance of this heat pipe deteriorated once dry-out occurred.

2011 ◽  
Vol 15 (3) ◽  
pp. 879-888 ◽  
Author(s):  
Rathinasamy Senthilkumar ◽  
Subaiah Vaidyanathan ◽  
Sivaramanb Balasubramanian

This paper discuses the use of self rewetting fluids in the heat pipe. In conventional heat pipes, the working fluid used has a negative surface-tension gradient with temperature. It is an unfavourable one and it decreases the heat transport between the evaporator section and the condenser section. Self rewetting fluids are dilute aqueous alcoholic solutions which have the number of carbon atoms more than four. Unlike other common liquids, self-rewetting fluids have the property that the surface tension increases with temperature up to a certain limit. The experiments are conducted to improve the heat-transport capability and thermal efficiency of capillary assisted heat pipes with the self rewetting fluids like aqueous solutions of n-Butanol and n-Pentanol and its performance is compared with that of pure water. The n-Butanol and n-Pentanol are added to the pure water at a concentration of 0.001moles/lit to prepare the self rewetting fluids. The heat pipes are made up of copper container with a two-layered stainless steel wick consisting of mesh wrapped screen. The experimental results show that the maximum heat transport of the heat pipe is enhanced and the thermal resistances are considerably decreased than the traditional heat pipes filled with water. The fluids used exhibit an anomalous increase in the surface tension with increasing temperature.


1998 ◽  
Vol 120 (4) ◽  
pp. 1064-1071 ◽  
Author(s):  
J. M. Ha ◽  
G. P. Peterson

The original analytical model for predicting the maximum heat transport capacity in micro heat pipes, as developed by Cotter, has been re-evaluated in light of the currently available experimental data. As is the case for most models, the original model assumed a fixed evaporator region and while it yields trends that are consistent with the experimental results, it significantly overpredicts the maximum heat transport capacity. In an effort to provide a more accurate predictive tool, a semi-empirical correlation has been developed. This modified model incorporates the effects of the temporal intrusion of the evaporating region into the adiabatic section of the heat pipe, which occurs as the heat pipe approaches dryout conditions. In so doing, the current model provides a more realistic picture of the actual physical situation. In addition to incorporating these effects, Cotter’s original expression for the liquid flow shape factor has been modified. These modifications are then incorporated into the original model and the results compared with the available experimental data. The results of this comparison indicate that the new semiempirical model significantly improves the correlation between the experimental and predicted results and more accurately represents the actual physical behavior of these devices.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012088
Author(s):  
A. A. Litvintceva ◽  
N. I. Volkov ◽  
N. I. Vorogushina ◽  
V. A. Moskovskikh ◽  
V. V. Cheverda

Abstract Heat pipes are a good solution for temperature stabilization, for example, of microelectronics, because these kinds of systems are without any moving parts. Experimental research of the effect of operating parameters on the heat transfer in a cylindrical heat pipe has been conducted. The effect of the working fluid properties and the porous layer thickness on the heat flux and temperature difference in the heat pipe has been investigated. The temperature field of the heat pipe has been investigated using the IR-camera and K-type thermocouples. The data obtained by IR-camera and K-type thermocouples have been compared. It is demonstrated the power transferred from the evaporator to the condenser is a linear function of the temperature difference between them.


1996 ◽  
Vol 118 (3) ◽  
pp. 740-746 ◽  
Author(s):  
H. B. Ma ◽  
G. P. Peterson

An experimental investigation was conducted and a test facility constructed to measure the capillary heat transport limit in small triangular grooves, similar to those used in micro heat pipes. Using methanol as the working fluid, the maximum heat transport and unit effective area heat transport were experimentally determined for ten grooved plates with varying groove widths, but identical apex angles. The experimental results indicate that there exists an optimum groove configuration, which maximizes the capillary pumping capacity while minimizing the combined effects of the capillary pumping pressure and the liquid viscous pressure losses. When compared with a previously developed analytical model, the experimental results indicate that the model can be used accurately to predict the heat transport capacity and maximum unit area heat transport when given the physical characteristics of the working fluid and the groove geometry, provided the proper heat flux distribution is known. The results of this investigation will assist in the development of micro heat pipes capable of operating at increased power levels with greater reliability.


Author(s):  
Mohammad Moulod ◽  
Gisuk Hwang

A heat pipe has been known as a thermal superconductor utilizing a liquid-vapor phase change, and it has drawn significant attentions for advanced thermal management systems. However, a challenge is the size limitation, i.e., the heat pipe cannot be smaller than the evaporator/condenser wick structures, typically an order of micron, and a new operating mechanism is required to meet the needs for the nanoscale thermal management systems. In this study, we design the nanoscale heat pipe employing the gas-filled nanostructure, while transferring heat via ballistic fluid-particle motions with a possible returning working fluid via surface diffusions along the nanostructure. The enhanced heat flux for the nano heat pipe is demonstrated using the nonequilibrium molecular dynamics simulations (NEMDS) for the argon gas confined by the 20 nm-long Pt nanogap with a post wall with the temperature difference between the hot and cold surfaces of 20 K. The predicted results show that the maximum heat flux through the gas-filled nanostructure (heat pipe) nearly doubles that of the nanogap without the post wall at 100 < T < 140 K. The optimal operating conditions/material selections are discussed. The results for the nanogap agree with those obtained from the kinetic theory, and provide insights into the design of advanced thermal management systems.


2011 ◽  
Vol 27 (2) ◽  
pp. 167-176 ◽  
Author(s):  
L.-H. Chien ◽  
Y.-C. Shih

ABSTRACTFlat heat pipes having mesh capillaries were investigated experimentally in this study. An apparatus was designed to test thermal performance of plate type copper water heat pipe having one or two layers of #50 or #80 mesh capillary structures with 5 to 50 W heat input. The working fluid, water, is charged in volumes equivalent to 25%, 33%, or 50% of the internal space. In addition to horizontal orientation, heat pipes were tested with the evaporator section elevated up to 40 degree inclination angle. Temperature distribution of the heat pipe was measured, and the evaporator, adiabatic and condensation resistances were calculated separately. The effects of mesh size, charge volume fraction, and inclination angle on thermal resistance were discussed. In general, the #80 mesh yielded lower thermal resistance than the #50 mesh. Inclination angle has a more significant effect on condenser than evaporator. Analysis of evaporation and condensation in flat heat pipes was conducted and semi-empirical correlations were derived. The present evaporation correlation predicts evaporation resistance between −20% and +30%, and the condensation correlation predicts most condensation resistance data within ±30% for 25% and 33% charge volume fraction.


Author(s):  
S. B. Liang ◽  
G. P. Xu

Self-sustainable motions of the slug flow in oscillating heat pipes have been investigated in the paper. Thin film condensation in the capillary channels of the condenser of the oscillating heat pipes was studied. Instability of the thin liquid film on the characteristics of heat pipes was analysed. The extra thermal resistance caused by the thickness of the thin liquid film was taken into account for the numerical simulation of the oscillatory motions of the slug flow in the heat pipes. Saturated temperatures and pressures of the working fluid in the condenser were obtained. Thermoacoustic theory was applied to calculate heat transport through the adiabatic section of the heat pipes. Experimental studies were carried out to understand the heat transfer behaviours of heat pipes. One heat pipe with the working fluid of HFC-134a was evaluated. The heat pipe is made of aluminium plate and has the width of 50 mm and thickness of 1.9 mm. Numerical and experimental results relevant to the heat transport capability of the heat pipe were analysed and compared.


2005 ◽  
Vol 127 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Yaxiong Wang ◽  
G. P. Peterson

A novel flat heat pipe has been developed to assist in meeting the high thermal design requirements in high power microelectronics, power converting systems, laptop computers and spacecraft thermal control systems. Two different prototypes, each measuring 152.4 mm by 25.4 mm were constructed and evaluated experimentally. Sintered copper screen mesh was used as the primary wicking structure, in conjunction with a series of parallel wires, which formed liquid arteries. Water was selected as the working fluid. Both experimental and analytical investigations were conducted to examine the maximum heat transport capacity and optimize the design parameters of this particular design. The experimental results indicated that the maximum heat transport capacity and heat flux for Prototype 1, which utilized four layers of 100 mesh screen were 112 W and 17.4W/cm2, respectively, in the horizontal position. For Prototype 2, which utilized six layers of 150 mesh screen, these values were 123 W and 19.1W/cm2, respectively. The experimental results were in good agreement with the theoretical predictions for a mesh compact coefficient of C=1.15.


Author(s):  
Liang-Han Chien ◽  
Y.-C. Shih

In this study plate type heat pipes having mesh capillaries were investigated experimentally and theoretically. A test apparatus was designed to test thermal performance of plate type copper-water heat pipe having one or two layers of #50 or #80 mesh capillary structures with 5-to-50 W heat input. The working fluid, water is charged with 25% or 33% volume of the heat pipe internal space. In addition to horizontal orientation, the heat pipes were tested with the evaporator section elevated up to 40 degree inclination angle. Temperature distribution of the heat pipe was measured, and the evaporator, adiabatic and condensation resistances of the heat pipe were calculated separated. The effects of mesh size, charge volume, and inclination angle on each thermal resistance were discussed. In general, the #80 mesh yields lower thermal resistances than the #50 mesh; inclination angle has more significant effect on condenser than evaporator. Theoretical models of evaporation and condensation in flat heat pipes were proposed to interpolate the experimental results. The present evaporation model predicts the experimental data of evaporation resistance between −20% and +30%, and the condensation model predicts most condensation resistance data within ±30%.


Sign in / Sign up

Export Citation Format

Share Document