Forced Convective Boiling in Microchannels for kW/cm2 Electronics Cooling

Author(s):  
Daniel J. Faulkner ◽  
Reza Shekarriz

This paper reports some of the results of our tests for the development of a high heat flux cooling system for thermal management of high power electronics. Our objective is to develop a practical design solution for achieving 1000 W/cm2 cooling. To achieve such high heat transfer rates, we have pursued and combined design advantages of a microchannel heat exchanger, high heat fluxes associated with forced convective nucleate boiling, and the use of a nanoparticles laden fluid for enhancement of heat transfer. A laboratory test module was designed, built, and tested to verify its performance. The experimental system employed sub-cooled as well as saturated forced convection boiling heat transfer in a high aspect ratio parallel microchannel heat sink. The working fluids tested were water and a selection of ceramic-based nanoparticle suspensions (nanofluids). The system was observed to readily dissipate heat fluxes in excess of 275 W/cm2 of substrate, while maintaining the substrate at or below 125°C. For optimized fin geometry, the current conditions would result in greater than 500 W/cm2. While the use of nanofluids was intended for boiling enhancement to push the envelop beyond 1000 W/cm2, we discerned limited improvement in the overall heat transfer rate. Future studies are planned for further exploitation of nanoparticles for enhancement of convective nucleate boiling.

Author(s):  
Peipei Chen ◽  
Barclay G. Jones ◽  
Ty A. Newell

This work reports on experimental studies to visualize nucleate boiling on the enhanced heat transfer surface of the hypervapotron for with application in the International Thermonuclear Experiment Reactor [ITER]. This research uses the simulant fluid Freon (R134A) instead of prototypic water to model the system performance. This results in much lower thermophysical conditions to represent the prototypic phenomena. By using reduced pressure, temperatures, etc, based on the critical physical properties of both working fluids, Freon and water, the dramatic drop in the level of these quantities with Freon allows the use of modest test conditions. The experiment was conducted for both saturated and subcooled boiling with different heat fluxes (from 50 to 300 kW/m2). A comparison of the heat transfer performance of finned structures and flat surfaces were examined under particular fluid conditions. The uniqueness of this work is the visualization method that allows direct observation of the subcooled boiling process of the Hypervapotron surfaces. Working with a high speed (12,000 frames per second), high fidelity digital camera with variable magnifications (from 1×–25×), the sub-cooled boiling phenomena was observed in detail. A major conclusion of this work is the existence of two separate zones linked to different energy removal efficiency in hypervapotron. Under high heat flux condition, enhanced boiling heat transfer (about 20–30% higher than flat surface) was observed for hypervapotron effect, while saturated boiling happened in the cavity, and a large portion of the region was vapor filled. The process of vapor bubble rotation in the slot appeared to be helpful to enhance energy transfer, as evidenced by an improved wetting condition on the heating surfaces.


2019 ◽  
Vol 196 ◽  
pp. 00062
Author(s):  
Vladimir Kuznetsov ◽  
Alisher Shamirzaev ◽  
Alexander Mordovskoy

This paper presents the results of an experimental study of the heat transfer during flow boiling of refrigerant R236fa in a horizontal microchannel heat sink. The experiments were performed using closed loop that re-circulates coolant. Microchannel heat exchanger that contains two microchannels with 2x0.4 mm cross-section was used as the test section. The dependence of average heat flux on wall superheat and critical heat flux were measured in the range of mass fluxes from 600 to 1600 kg/m2s and in the range of heat fluxes from 5 to 120 W/cm2. For heat flux greater than 60 W/cm2, nucleate boiling suppression has significant effect on the flow boiling heat transfer, and this leads to decrease of the heat transfer coefficient with heat flux grows.


Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2021 ◽  
Author(s):  
Matt Harrison ◽  
Joshua Gess

Abstract Using Particle Image Velocimetry (PIV), the amount of fluid required to sustain nucleate boiling was quantified to a microstructured copper circular disk. Having prepared the disk with preferential nucleation sites, an analytical model of the net coolant flow rate requirements to a single site has been produced and validated against experimental data. The model assumes that there are three primary phenomena contributing to the coolant flow rate requirements at the boiling surface; radial growth of vapor throughout incipience to departure, bubble rise, and natural convection around the periphery. The total mass flowrate is the sum of these contributing portions. The model accurately predicts the quenching fluid flow rate at low and high heat fluxes with 4% and 30% error of the measured value respectively. For the microstructured surface examined in this study, coolant flow rate requirements ranged from 0.1 to 0.16 kg/sec for a range of heat fluxes from 5.5 to 11.0 W/cm2. Under subcooled conditions, the coolant flow rate requirements plummeted to a nearly negligible value due to domination of transient conduction as the primary heat transfer mechanism at the liquid/vapor/surface interface. PIV and the validated analytical model could be used as a test standard where the amount of coolant the surface needs in relation to its heat transfer coefficient or thermal resistance is a benchmark for the efficacy of a standard surface or boiling enhancement coating/surface structure.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 191 ◽  
Author(s):  
Jundika Kurnia ◽  
Desmond Lim ◽  
Lianjun Chen ◽  
Lishuai Jiang ◽  
Agus Sasmito

Owing to its relatively high heat transfer performance and simple configurations, liquid cooling remains the preferred choice for electronic cooling and other applications. In this cooling approach, channel design plays an important role in dictating the cooling performance of the heat sink. Most cooling channel studies evaluate the performance in view of the first thermodynamics aspect. This study is conducted to investigate flow behaviour and heat transfer performance of an incompressible fluid in a cooling channel with oblique fins with regards to first law and second law of thermodynamics. The effect of oblique fin angle and inlet Reynolds number are investigated. In addition, the performance of the cooling channels for different heat fluxes is evaluated. The results indicate that the oblique fin channel with 20° angle yields the highest figure of merit, especially at higher Re (250–1000). The entropy generation is found to be lowest for an oblique fin channel with 90° angle, which is about twice than that of a conventional parallel channel. Increasing Re decreases the entropy generation, while increasing heat flux increases the entropy generation.


Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Author(s):  
Nihal E. Joshua ◽  
Denesh K. Ajakumar ◽  
Huseyin Bostanci

This study experimentally investigated the effect of hydrophobic patterned surfaces in nucleate boiling heat transfer. A dielectric liquid, HFE-7100, was used as the working fluid in the saturated boiling tests. Dielectric liquids are known to have highly-wetting characteristics. They tend to fill surface cavities that would normally trap vapor/gas, and serve as active nucleation sites during boiling. With the lack of these vapor filled cavities, boiling of a dielectric liquid leads to high incipience superheats and accompanying temperature overshoots. Heater samples in this study were prepared by applying a thin Teflon (AF400, Dupont) coating on 1-cm2 smooth copper surfaces following common photolithography techniques. Matching size thick film resistors, attached onto the copper samples, generated heat and simulated high heat flux electronic devices. Tests investigated the heater samples featuring circular pattern sizes between 40–100 μm, and corresponding pitch sizes between 80–200 μm. Additionally, a plain, smooth copper surface was tested to obtain reference data. Based on data, hydrophobic patterned surfaces effectively eliminated the temperature overshoot at boiling incipience, and considerably improved nucleate boiling performance in terms of heat transfer coefficient and critical heat flux over the reference surface. Hydrophobic patterned surfaces therefore demonstrated a practical surface modification method for heat transfer enhancement in immersion cooling applications.


Author(s):  
Pega Hrnjak ◽  
Seongho Kim

Flow boiling heat transfer characteristics of CO2 with and without oil were investigated experimentally in horizontal smooth and enhanced tubes with an inner diameter of 11.2 mm. The visualization of flow pattern provides a detailed attributes of the nucleate and the convective boiling heat transfer. In order to investigate the effect of the miscible oil on the heat transfer of CO2, POE (polyolester) RENSIO C85E oil is added to give an oil circulation rate (OCR) between 0.5% and 2%. Results are compared with those of pure CO2. The experimental conditions include evaporation temperatures of −15 °C, mass fluxes from 40 to 200 kg/m2 s, heat fluxes from 0.5 to 10 kW/m2, and vapor qualities from 0.1 to 0.8. Oil generally deteriorates the heat transfer coefficient of pure CO2. The reduction in heat transfer coefficient is most apparent at low vapor qualities, 0.1 to 0.4, and at low mass fluxes, 100 and 200 kg/m2. It is caused by the suppression of nucleate boiling due to increased surface tension. At conditions where the convective boiling contribution is dominant, vapor qualities above 0.5, oil increases heat transfer coefficients. Through visualization, it is shown that the wetted area on the perimeter of inner tube is enhanced due to formation of foaming in the smooth tube. However, such enhancement of heat transfer due to forming is negligible in the enhanced tube, because the enhanced factor due to micro-finned structures is dominant.


Sign in / Sign up

Export Citation Format

Share Document