Transpiration Cooling Using Porous Triple-Laminated Plates

2003 ◽  
Author(s):  
H. L. Wu ◽  
X. F. Peng

Transpiration cooling using porous triple-laminated plates was numerically investigated to understand the associated flow mechanism and heat transfer characteristics with/without crossflow. The flow structure and heat transfer behavior are very similar in the two laminate gaps, and crossflow has little influence on them. The cooling performance shows very good uniformity and high efficiency. Violent impingement and turbulent flow inside the plate contribute greatly to local heat transfer intensification. The cooling efficiency might be further improved with enhancement of film cooling effect, by enlarging the discharge holes to decrease the local jet-to-crossflow velocity ratio, or by using inclined discharge holes to increase the film attaching ability.

1989 ◽  
Vol 111 (1) ◽  
pp. 71-77 ◽  
Author(s):  
P. M. Ligrani ◽  
A. Ortiz ◽  
S. L. Joseph ◽  
D. L. Evans

Heat transfer effects of longitudinal vortices embedded within film-cooled turbulent boundary layers on a flat plate were examined for free-stream velocities of 10 m/s and 15 m/s. A single row of film-cooling holes was employed with blowing ratios ranging from 0.47 to 0.98. Moderate-strength vortices were used with circulating-to-free stream velocity ratios of −0.95 to −1.10 cm. Spatially resolved heat transfer measurements from a constant heat flux surface show that film coolant is greatly disturbed and that local Stanton numbers are altered significantly by embedded longitudinal vortices. Near the downwash side of the vortex, heat transfer is augmented, vortex effects dominate flow behavior, and the protection from film cooling is minimized. Near the upwash side of the vortex, coolant is pushed to the side of the vortex, locally increasing the protection provided by film cooling. In addition, local heat transfer distributions change significantly as the spanwise location of the vortex is changed relative to film-cooling hole locations.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-258 ◽  
Author(s):  
John P. C. W. Ling ◽  
Peter T. Ireland ◽  
Lynne Turner

New techniques for processing transient liquid crystal heat transfer experiment have been developed. The methods are able to measure detailed local heat transfer coefficient and adiabatic wall temperature in a three temperature system from a single transient test using the full intensity history recorded. Transient liquid crystal processing methods invariably assume that lateral conduction is negligible and so the heat conduction process can be considered one-dimensional into the substrate. However, in regions with high temperature variation such as immediately downstream of a film-cooling hole, it is found that lateral conduction can become significant. For this reason, a procedure which allows for conduction in three dimensions was developed by the authors. The paper is the first report of a means of correcting data from the transient heat transfer liquid crystal experiments for the effects of significant lateral conduction. The technique was applied to a film cooling system as an example and a detailed uncertainty analysis performed.


Author(s):  
John W. McClintic ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary D. Webster

In gas turbine engines, film cooling holes are commonly fed with an internal crossflow, the magnitude of which has been shown to have a notable effect on film cooling effectiveness. In Part I of this study, as well as in a few previous studies, the magnitude of internal crossflow velocity was shown to have a substantial effect on film cooling effectiveness of axial shaped holes. There is, however, almost no data available in the literature that shows how internal crossflow affects compound angle shaped film cooling holes. In Part II, film cooling effectiveness, heat transfer coefficient augmentation, and discharge coefficients were measured for a single row of compound angle shaped film cooling holes fed by internal crossflow flowing both in-line and counter to the span-wise direction of coolant injection. The crossflow-to-mainstream velocity ratio was varied from 0.2–0.6 and the injection velocity ratio was varied from 0.2–1.7. It was found that increasing the magnitude of the crossflow velocity generally caused degradation of the film cooling effectiveness, especially for in-line crossflow. An analysis of jet characteristic parameters demonstrated the importance of crossflow effects relative to the effect of varying the film cooling injection rate. Heat transfer coefficient augmentation was found to be primarily dependent on injection rate, although for in-line crossflow, increasing crossflow velocity significantly increased augmentation for certain conditions.


Author(s):  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng

Detailed heat transfer distributions are numerically investigated on a multiple jet impingement target surface with staggered arrays of spherical dimples where coolant can be extracted through film holes for external film cooling. The three dimensional Reynolds-averaged Navier-Stokes analysis with SST k-ω turbulence model is conducted at jet Reynolds number from 15,000 to 35,000. The separation distance between the jet plate and the target surface varies from 3 to 5 jet diameters and two jet-induced crossflow schemes are included to be referred as large and small crossflow at one and two opposite exit openings correspondingly. Flow and heat transfer results for the dimpled target plate with three suction ratios of 2.5%, 5.0% and 12.0% are compared with those on dimpled surfaces without film holes. The results indicate the presence of film holes could alter the local heat transfer distributions, especially near the channel outlets where the crossflow level is the highest. The heat transfer enhancements by applying film holes to the dimpled surfaces is improved to different degrees at various suction ratios, and the enhancements depend on the coupling effect of impingement and channel flow, which is relevant to jet Reynolds number, jet-to-plate spacing and crossflow scheme.


2005 ◽  
Vol 2005 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Dieter Bohn ◽  
Jing Ren ◽  
Karsten Kusterer

For the determination of the film-cooling heat transfer, the design of a turbine blade relies on the conventional determination of the adiabatic film-cooling effectiveness and heat transfer conditions for test configurations. Thus, additional influences by the interaction of fluid flow and heat transfer and influences by additional convective heat transfer cannot be taken into account with sufficient accuracy. Within this paper, calculations of a film-cooled duct wall and a film-cooled real blade with application of the adiabatic and a conjugate heat transfer condition have been performed for different configurations. It can be shown that the application of the conjugate calculation method comprises the influence of heat transfer within the cooling film. The local heat transfer rate varies significantly depending on the local position.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Film cooling experiments were run at the high speed cascade wind tunnel of the University of the Federal Armed Forces Munich. The investigations were carried out with a linear cascade of highly loaded turbine blades. The main objectives of the tests were to assess the film cooling effectiveness and the heat transfer in zones with main flow separation. Therefore, the blades were designed to force the flow to detach on the pressure side shortly downstream of the leading edge and reattach at about half of the axial chord. In this zone, film cooling rows are placed among others for a reduction of the size of the separation bubble. The analyzed region on the blade is critical due to the high heat transfer present at the leading edge and at the reattachment line after the main flow separation. Film cooling can contribute to a reduction of the size of the separation bubble reducing aerodynamic losses, however, in general, it increases heat transfer due to turbulent mixing. The reduction of the size of the separation bubble might also be twofold, since it acts like a thermal insulator on the blade and reducing the size of the bubble might lead to a stronger heating of the blade. Film cooling should, therefore, take both into account: first, a proper protection of the surface and second, reducing aerodynamic losses, diminishing the extension of the main flow separation. While experimental results of the adiabatic film cooling effectiveness were shown in previous publications, the local heat transfer is analyzed in this paper. Emphasis is also placed upon analyzing, in detail, the flow separation process. Furthermore, the tests comprise the analysis of the effect of different outlet Mach and Reynolds numbers and film cooling. In part two of this paper, the overall film cooling effectiveness is addressed. Local heat transfer is still difficult to predict with modern numerical tools and this is especially true for complex flows with flow separation. Some numerical results with the Reynolds averaged Navier-Stokes (RANS) and large eddy simulation (LES) show the capability of a commercial solver in predicting the heat transfer.


Author(s):  
Douglas N. Barlow ◽  
Yong W. Kim

An experimental investigation of film cooling on rough surfaces has been accomplished at a Reynolds number and dimensionless boundary layer momentum thickness found in current high performance first stage turbine vanes. A transient experimental method using thermochromic liquid crystals is employed to determine both local heat transfer coefficients and film cooling effectiveness values on planar rough surfaces. Two surface roughness configurations are investigated with a single row of cooling holes spaced three diameters apart and inclined 30° to the mainstream flow. The mainstream turbulence level at the point of film injection is 8.5% and the density ratio considered is approximately 1.0. The influence of roughness on the centerline film cooling effectiveness, laterally averaged film cooling effectiveness, laterally averaged heat transfer coefficients, as well as area averaged values are presented. It is found that the presence of roughness causes a decrease in the film cooling effectiveness over that of the smooth surface for the range of experimental parameters considered in this study. In addition, significant lateral smoothing in film cooling effectiveness distribution is observed for the rougher surfaces. Measured heat transfer coefficients on rough surfaces show a trend of monotonic increase with blowing ratio. However, such increase is not as great as that for the case of smooth surface.


1999 ◽  
Vol 123 (4) ◽  
pp. 749-757 ◽  
Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local heat transfer coefficients on a flat plate surface downstream a row of cylindrical ejection holes were investigated. The parameters blowing angle, hole pitch, blowing rate, and density ratio were varied over a wide range, emphasizing engine relevant conditions. A high-resolution IR-thermography technique was used for measuring surface temperature fields. Local heat transfer coefficients were obtained from a Finite Element analysis. IR-determined surface temperatures and backside temperatures of the cooled test plate measured with thermocouples were applied as boundary conditions in this heat flux computation. The superposition approach was employed to obtain the heat transfer coefficient hf based on the difference between actual wall temperatures and adiabatic wall temperatures in the presence of film cooling. The hf data are given for an engine relevant density ratio of 1.8. Therefore, heat transfer results with different wall temperature conditions and adiabatic film cooling effectiveness results for identical flow situations (i.e., constant density ratios) were combined. Characteristic surface patterns of the locally resolved heat transfer coefficients hf are recognized and quantified as the different ejection parameters are changed. The detailed results are used to discuss the specific local heat transfer behavior in the presence of film cooling. They also provide a base of surface data essential for the validation of the heat transfer capabilities of CFD codes in discrete hole film cooling.


Author(s):  
Zahra Ghorbani-Tari ◽  
Lei Wang ◽  
Bengt Sunden

The developing heat transfer characteristics in a rectangular channel (AR = 4) equipped with continuous transverse ribs are experimentally investigated. The ribs were regularly spaced over a section of the channel which was heated by a uniform heat flux. The blockage ratio e/Dh varied from 0.039 to 0.078. Two values of the rib pitch to rib height ratio (10 and 20) were considered, with the Reynolds number from 57,000 to 127, 000. The studied geometry is relevant to turbine structures between high pressure and low pressure turbines in aircraft engines. The maps of local heat transfer coefficient in the inter-rib regions were obtained by using the steady state liquid crystal thermography. The main purpose is to investigate the effect of blockage ratio (e/Dh) on the developing heat transfer behavior. In particular, the heat transfer characteristics between the first repeated ribs, i.e., in the inter-rib regions were studied, where the flow field is fully developed while the thermal field is not yet periodically fully developed.


Author(s):  
Yong W. Kim ◽  
Chad Coon ◽  
Hee-Koo Moon

Pressure-side discharge is commonly employed in turbine blades and nozzle guide vanes to keep the trailing edge metal temperatures within an allowable limit while minimizing aerodynamic penalties. Despite its widespread use, film-cooling data of the discharge slot are scarce in open literature. The objectives of the present experimental study were to measure detailed local heat transfer and film-cooling effectiveness from a 10x scale trailing-edge model of an industrial gas turbine airfoil in a low speed wind tunnel. To simulate the mainstream flow acceleration in vane and blade row passages, a linear velocity gradient was imposed using an adjustable top wall. The present work employed the composite slab quasi-steady liquid crystal method that allows measurements of local heat transfer coefficients and film-cooling effectiveness from two related tests. With this technique, the heat transfer measurement can be performed in a cold wind tunnel. The coolant-to-mainstream blowing ratio was varied between 0.25 and 1.0. The slot hydraulic diameter based Reynolds number ranged from 4,760 to 19,550. The coolant-to-mainstream density ratio was fixed at 0.95. Slot discharge coefficients were also measured with mainstream acceleration. Both local heat transfer coefficients and film-cooling effectiveness displayed a strong dependency on blowing ratio and mainstream acceleration. However, the discharge coefficients showed little dependency on the mainstream acceleration.


Sign in / Sign up

Export Citation Format

Share Document