PBMR Desalination Options: An Economic Study

Author(s):  
Riaan de Bruyn ◽  
Ryan Hannink ◽  
Reiner Kuhr ◽  
Jan P. Van Ravenswaay ◽  
Nick Zervos ◽  
...  

The Pebble Bed Modular Reactor (PBMR), under development in South Africa, is an advanced helium-cooled graphite moderated high-temperature gas-cooled nuclear reactor. The heat output of the PBMR is primarily suited for process applications or power generation. In addition, various desalination technologies can be coupled to the PBMR to further improve the overall efficiency and economics, where suitable site opportunities exist. Several desalination application concepts were evaluated for both a cogeneration configuration as well as a waste heat utilization configuration. These options were evaluated to compare the relative economics of the different concepts and to determine the feasibility of each configuration. The cogeneration desalination configuration included multiple PBMR units producing steam for a power cycle, using a back-pressure steam turbine generator exhausting into different thermal desalination technologies. These technologies include Multi-Effect Distillation (MED), Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC) as well as Multi-Stage Flash (MSF) with all making use of extraction steam from backpressure turbines. These configurations are optimized to maximize gross revenue from combined power and desalinated water sales using representative economic assumptions with a sensitivity analysis to observe the impact of varying power and water costs. Increasing turbine back pressure results in a loss of power output but a gain in water production. The desalination systems are compared as incremental investments. A standard MED process with minimal effects appears most attractive, although results are very sensitive with regards to projected power and water values. The waste heat utilization desalination configuration is based on the current 165 MWe PBMR Demonstration Power Plant (DPP) to be built for the South African utility Eskom. This demonstration plant is proposed at the Koeberg Nuclear site and utilizes a direct, single shaft recuperative Brayton Cycle with helium as working fluid. The Brayton Cycle uses a pre-cooler and inter-cooler to cool the helium before entering the low-pressure compressor (LPC) and the high-pressure compressor (HPC) respectively. The pre-cooler and intercooler rejects 218 MWt of waste heat at 73°C and 63°C, respectively. This waste heat is ideally suited for some low temperature desalination processes and can be used without negative impact on the power output and efficiency of the nuclear power plant. These low temperature processes include Low Temperature Multi-Effect Distillation (LT-MED) as well Reverse Osmosis (RO) with pre-heated water. The relative economics of these design concepts are compared as add-ons to the PBMR-DPP and the results include a net present value (NPV) study for both technologies. From this study it can be concluded that both RO as well LT-MED provide water at reasonable production rates, although a final study recommendation would be based on site and area specific requirements.

2010 ◽  
Vol 31 (4) ◽  
pp. 111-123 ◽  
Author(s):  
Aleksandra Borsukiewicz-Gozdur

Influence of heat recuperation in ORC power plant on efficiency of waste heat utilization The present work is devoted to the problem of utilization of the waste heat contained in the exhaust gases having the temperature of 350 °C. Conversion of the waste heat into electricity using a power plant working with organic fluid cycles is considered. Three Organic Rankine Cycle (ORC) power plant solutions are analysed and compared: a solution with the basic, single thermodynamic conversion cycle, one with internal heat recuperation and one with external heat recuperation. It results from the analysis that it is the proper choice of the working fluid evaporation temperature that fundamentally affects the maximum of the ORC plant output power. Application of the internal heat recuperation in the plant basic cycle results in the output power increase of approx. 5%. Addition of the external heat recuperation to the plant basic cycle, in the form of a secondary supercritical ORC power cycle can rise the output power by approx. 2%.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2634 ◽  
Author(s):  
Daniel T. Mohler ◽  
Michael H. Wilson ◽  
Zhen Fan ◽  
John G. Groppo ◽  
Mark Crocker

Microalgae are a potential means of recycling CO2 from industrial point sources. With this in mind, a novel photobioreactor (PBR) was designed and deployed at a coal-fired power plant. To ascertain the feasibility of using waste heat from the power plant to heat algae cultures during cold periods, two heat transfer models were constructed to quantify PBR cooling times. The first, which was based on tabulated data, material properties and the physical orientation of the PBR tubes, yielded a range of heat transfer coefficients of 19–64 W m−2 K−1 for the PBR at wind speeds of 1–10 m s−1. The second model was based on data collected from the PBR and gave an overall heat transfer coefficient of 24.8 W m−2 K−1. Energy penalties associated with waste heat utilization were found to incur an 18%–103% increase in energy consumption, resulting in a 22%–70% reduction in CO2 capture for the scenarios considered. A techno-economic analysis showed that the cost of heat integration equipment increased capital expenditures (CAPEX) by a factor of nine and increased biomass production costs by a factor of three. Although the scenario is thermodynamically feasible, the increase in CAPEX incurs an increase in biomass production cost that is economically untenable.


Author(s):  
P. Lu ◽  
C. Brace ◽  
B. Hu ◽  
C. Copeland

For an internal combustion engine, a large quantity of fuel energy (accounting for approximately 30% of the total combustion energy) is expelled through the exhaust without being converted into useful work. Various technologies including turbo-compounding and the pressurized Brayton bottoming cycle have been developed to recover the exhaust heat and thus reduce the fuel consumption and CO2 emission. However, the application of these approaches in small automotive power plants has been relatively less explored because of the inherent difficulties, such as the detrimental backpressure and higher complexity imposed by the additional devices. Therefore, research has been conducted, in which modifications were made to the traditional arrangement aiming to minimize the weaknesses. The turbocharger of the baseline series turbo-compounding was eliminated from the system so that the power turbine became the only heat recovery device on the exhaust side of the engine, and operated at a higher expansion ratio. The compressor was separated from the turbine shaft and mechanically connected to the engine via CVT. According to the results, the backpressure of the novel system is significantly reduced comparing with the series turbo-compounding model. The power output at lower engine speed was also promoted. For the pressurized Brayton bottoming cycle, rather than transferring the thermal energy from the exhaust to the working fluid, the exhaust gas was directly utilized as the working medium and was simply cooled by ambient coolant before the compressor. This arrangement, which is known as the inverted Brayton cycle was simpler to implement. Besides, it allowed the exhaust gasses to be expanded below the ambient pressure. Thereby, the primary cycle was less compromised by the bottoming cycle. The potential of recovering energy from the exhaust was increased as well. This paper analysed and optimized the parameters (including CVT ratio, turbine and compressor speed and the inlet pressure to the bottoming cycle) that are sensitive to the performance of the small vehicle engine equipped with inverted Brayton cycle and novel turbo-compounding system respectively. The performance evaluation was given in terms of brake power output and specific fuel consumption. Two working conditions, full and partial load (10 and 2 bar BMEP) were investigated. Evaluation of the transient performance was also carried out. Simulated results of these two designs were compared with each other as well as the performance from the corresponding baseline models. The system models in this paper were built in GT-Power which is a one dimension (1-D) engine simulation code. All the waste heat recovery systems were combined with a 2.0 litre gasoline engine.


Energy Policy ◽  
2013 ◽  
Vol 62 ◽  
pp. 236-246 ◽  
Author(s):  
Hao Fang ◽  
Jianjun Xia ◽  
Kan Zhu ◽  
Yingbo Su ◽  
Yi Jiang

Sign in / Sign up

Export Citation Format

Share Document