Optimization of a Non-Fueled Prechamber Ignition System for a Lean-Burn, Industrial Natural Gas Engine

Author(s):  
Corey A. Honl

A non-fueled prechamber ignition system was developed to provide for controlled and stable combustion to best support the goals of both Waukesha Engine and the ARES program. This paper will provide details and results of efforts undertaken in optimization of the following design aspects: tangential angle of prechamber orifice channels in relation to head-induced cylinder swirl, prechamber orifice diameter, prechamber volume (spark plug recess in precombustion chamber), and recession of the entire precombustion chamber into the cylinder head. A number of important conclusions will be verified and presented based on the development work done on a laboratory engine.


Author(s):  
A. K. Chan ◽  
S. H. Waters

An ignition system that is based on the alternating (AC) rather than the traditional direct (DC) current in the spark plug discharge has been developed at the Caterpillar Technical Center. This system can generate a long duration discharge with controllable power. It is believed that such an ignition system can provide both a leaner operating limit and a longer spark plug life than a traditional DC system due to the long discharge duration and the low discharge power. The AC ignition system has successfully been tested on a Caterpillar single cylinder G3500 natural gas engine to determine the effects on the engine performance, combustion characteristics and emissions. The test results indicate that while the AC ignition system has only a small impact on engine performance (with respect to a traditional DC system), it does extend the lean limit with lower NOx emissions. Evidences also show the potential of reduce spark plug electrode erosions from the low breakdown and sustaining discharge powers from the AC ignition system. This paper summarizes the prototype design and engine demonstration results of the AC ignition system.



Author(s):  
David L. Ahrens ◽  
Azer P. Yalin ◽  
Daniel B. Olsen ◽  
Gi-Heon Kim

Using a laser, as opposed to a conventional (electrical) spark plug, to create a combustion initiating spark is potentially advantageous for several reasons: flexibility in choosing and optimizing the spark location, in particular to move the spark away from solid heat sinks; production of a more robust spark containing more energy; and obviation of electrode erosion problems. These advantages may lead to an extension of the lean limit, an increase in engine thermal efficiency, and the concomitant benefits of reduced pollutant emissions. This paper presents the design of a laser ignition system appropriate for a large bore natural gas engine. Design considerations include: optimization of spark location, design of beam delivery system and optical plug, and mitigation of vibration and thermal effects. Engine test results will be presented in the second paper of this two-paper series.



Author(s):  
David L. Ahrens ◽  
Daniel B. Olsen ◽  
Azer P. Yalin

Using a laser, as opposed to a conventional (electrical) spark plug, to create a combustion initiating spark is potentially advantageous for several reasons: flexibility in choosing and optimizing the spark location, in particular to move the spark away from solid heat sinks; production of a more robust spark containing more energy; and obviation of electrode erosion problems. In this paper we present the on-engine test results of the laser ignition system on a large bore natural gas engine. Test results include: mass fraction burn duration, hydrocarbon emissions data, and combustion stability comparisons to the conventional spark plug ignition system. Design and spark location considerations for the laser ignition system were presented in the first paper of this two-paper series.



Author(s):  
Hongxun Gao ◽  
Ron Matthews ◽  
Sreepati Hari ◽  
Matt Hall

Ignition of extremely lean mixtures is a very challenging problem, especially for the low speed, high load conditions of large-bore natural gas engines. This paper presents initial results from testing a high energy ignition system, the railplug, which can assure ignition of very lean mixtures by means of its high energy deposition and high velocity jet of the plasma. Comparisons of natural gas engine tests using both a spark plug and a railplug are presented and discussed in this paper. The preliminary engine test show that the lean stability limit (LSL) can be extended from an equivalence ratio, φ, of ∼0.63 using a spark plug down to 0.56 using a railplug. The tests show that the railplug is very promising ignition system for lean burn natural gas engines and potentially for other engines that operate with very dilute mixtures. The ignition characteristics of different railplug geometric and circuit designs are also discussed.



1995 ◽  
Author(s):  
Dan D. Giordano ◽  
Peter W. Petersen






Author(s):  
Hongxun Gao ◽  
Matt J. Hall ◽  
Ofodike A. Ezekoye ◽  
Ron D. Matthews

It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of stationary large-bore natural gas engines. If these engines are to be used for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma jet. High-speed photography was used to study the discharge process. A heat transfer model is proposed to aid the railplug design. A parameter study was performed both in a constant volume bomb and in an operating natural gas engine to improve and optimize the railplug designs. The engine test results show that the newly designed railplugs can ensure the ignition of very lean natural gas mixtures and extend the lean stability limit significantly. The new railplug designs also improve durability.



Sign in / Sign up

Export Citation Format

Share Document