Development of the Waukesha 16V150 LTD Advanced Power Generation Engine

Author(s):  
Ed Reinbold ◽  
Daniel Mather

Waukesha Engine has developed an advanced power generation engine using technologies that were developed as part of the Department of Energy-Advanced Reciprocating Engine Systems (ARES) program. The engine uses lean-burn technologies for high efficiency, and low NOx emissions. The technical goals for the ARES program were 50% Brake Thermal Efficiency (BTE) and 0.075 g/kW-hr NOx emissions (with aftertreatment). The goals for the Waukesha Engine Phase 1 Advanced Power Generation (APG) engine are 42% Brake Thermal Efficiency (BTE) and 0.75 g/kW-hr (1.0 g/Bhp-hr) NOx emissions, capable of 0.075 g/kW-hr (0.1 g/Bhp-hr) with aftertreatment. The barriers and technical paths applied to achieve this performance are discussed in this paper.

Author(s):  
Rodney Nicoson ◽  
Julian Knudsen

Waukesha Engine, in cooperation with the Department of Energy, has designed a new high efficiency natural gas engine designed specifically for the power generation market. The APG1000 (Advance Power Generation) engine is capable of achieving 1 MW output at 42% thermal efficiency and less than 1 g/bhp-hr Nox. A design method using modern tools such as 3-D modeling, rapid prototyping and computer simulation have, in a large part, contributed to the success of this engine. This paper discusses the methodology and tools used in the design of the APG engine.


Author(s):  
Nathan Peters ◽  
Sai Krishna Pothuraju Subramanyam ◽  
Michael Bunce ◽  
Hugh Blaxill

Abstract In an effort to reduce fuel consumption and lower emissions output, there is a growing need for high efficiency engines in power generation. Ultra-lean (λ > ∼1.6) combustion via air dilution is an enabling technology for achieving high efficiencies while simultaneously reducing emissions of nitrogen oxides (NOx). Jet ignition is a pre-chamber-based combustion system that enables ultra-lean operation beyond what is achievable with traditional spark ignition engines. In this paper, results and analyses related to the downspeeding of a 390cc, high efficiency low-output single cylinder jet ignition engine operating ultra-lean are presented. The engine was developed as part of the US Department of Energy’s Advanced Research Projects Agency–Energy (DOE ARPA-E) GENSETS program1. The purpose of the program is to develop technologies for use in high efficiency combined heat and power generator sets. Due to the intended application of power generation, optimization of the engine for a specific operating condition is critical. An efficiency loss breakdown based on the Thermodynamic First Law is used to analyze the interdependent trends of engine speed, brake power, and normalized air-fuel ratio, lambda, with the aim of optimizing these parameters for brake thermal efficiency. The general trends of efficiency loss pathways with enleanment are found to be relatively insensitive to speed and load although the magnitude of the loss pathways changes. As the relative importance of the efficiency loss pathways changes with operating condition, so too does the lambda at which peak brake thermal efficiency occurs. The “peak efficiency lambda” was found to be at its leanest at low speed and high power where the influence of heat transfer is greatest and mechanical losses are minimized.


Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Author(s):  
Brandon J. Blizman ◽  
Darby B. Makel ◽  
J. Hunter Mack ◽  
Robert W. Dibble

A demonstration system has been developed intending to meet the California Energy Commission’s primary goal of improving California’s electric energy cost/value by providing a low-cost, high-efficiency distributed power generation system that operates on landfill gas as fuel. The project team led by Makel Engineering, Inc. includes UC Berkeley, CSU Chico and the Butte County Public Works Department. The team has developed a reliable, multi-cylinder Homogeneous Charge Compression Ignition (HCCI) engine by converting a Caterpillar 3116, 6.6 liter diesel engine to operate in HCCI mode. This engine utilizes a simple and robust thermal control system. Typically, HCCI engines are based on standard diesel engine designs with reduced complexity and cost based on the well known principles of engine dynamics. Coupled to an induction generator, this HCCI genset allows for simplified power grid connection. Testing with this HCCI genset allowed for the development of a control system to maintain optimal the inlet temperature and equivalence ratio. A brake thermal efficiency of 35.0% was achieved while producing less than 10.0 ppm of NOx and 30 kW of electrical power. Less than 5.0 ppm of NOx was recorded with a slightly lower brake thermal efficiency. Tests were conducted with both natural gas and simulated landfill gas as a fuel source. This demonstration system has shown that landfill gas fueled Homogeneous Charge Compression Ignition engine technology is a viable technology for distributed power generation.


2019 ◽  
Vol 8 (2) ◽  
pp. 1902-1905

The present energy scenario hydrogen fuel plays a dominant role in the power generation. Due to its unique characteristics of an extensive range of flammability, high flame speed, and diffusivity. In this present investigation, the diesel engine is converted into dual-fuel mode devoid of major conversions of the engine. The tests are performed on a dual-fuel mode and investigated the efficiency, emissions, and combustion features of the diesel engine. In the present context, hydrogen and biogas are injected from the inlet manifold as subsidiary fuel and diesel are injected as pilot fuel. The gaseous fuel injected in two different flow rates they are, 3 litres per minute (lpm), and 4lpm. The results from the experimentation revealed that the diesel with 4 lpm of hydrogen shows the 31.11 % enhancement of brake thermal efficiency but it shows 4.14% higher NOX emissions when compared with the pure diesel. But it shows. At the same time diesel with 4 lpm of Biogas exhibits 15.90% enhancement of brake thermal efficiency and 8.96% decrease in the NOX emissions in contrast to that of the single-mode of fuel with diesel.


Author(s):  
Luigi Tozzi ◽  
Emmanuella Sotiropoulou ◽  
Jessica Adair ◽  
Domenico Chiera

The quest for high engine brake thermal efficiency (BTE) in medium size (140mm – 190mm bore), lean-burn gas applications becomes increasingly difficult as lower emission levels (250mg/Nm3 NOx) are targeted. A traditional approach to offsetting this negative trend has been to design the piston and the intake ports to create high turbulence and homogeneous mixtures leading to faster combustion burn rates with leaner mixtures. This paper proposes a new combustion strategy aimed at optimizing fuel-air mixture stratification in the main combustion chamber. This would result in maximum fuel concentration within a passive prechamber plug leading to high turbulence flame jet (HTFJ) penetration in the main combustion chamber and, therefore, faster combustion burn rates. Experimental correlation of a combustion model is provided for flame jet ignition in a quiescent, mildly stratified combustion chamber through three different cases. The first case uses a traditional J-gap spark plug; the second, a prechamber plug that is not optimized for the fuel distribution present in this combustion chamber. Finally, the third case makes use of a prechamber plug that has been configured to have properly oriented HTFJ. These three cases constitute the basis of the proposed combustion strategy leading to significant increase in engine brake thermal efficiency (BTE).


2020 ◽  
Vol 6 ◽  
Author(s):  
Shouvik Dev ◽  
Hongsheng Guo ◽  
Brian Liko

Diesel fueled compression ignition engines are widely used in power generation and freight transport owing to their high fuel conversion efficiency and ability to operate reliably for long periods of time at high loads. However, such engines generate significant amounts of carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM) emissions. One solution to reduce the CO2 and particulate matter emissions of diesel engines while maintaining their efficiency and reliability is natural gas (NG)-diesel dual-fuel combustion. In addition to methane emissions, the temperatures of the diesel injector tip and exhaust gas can also be concerns for dual-fuel engines at medium and high load operating conditions. In this study, a single cylinder NG-diesel dual-fuel research engine is operated at two high load conditions (75% and 100% load). NG fraction and diesel direct injection (DI) timing are two of the simplest control parameters for optimization of diesel engines converted to dual-fuel engines. In addition to studying the combined impact of these parameters on combustion and emissions performance, another unique aspect of this research is the measurement of the diesel injector tip temperature which can predict potential coking issues in dual-fuel engines. Results show that increasing NG fraction and advancing diesel direct injection timing can increase the injector tip temperature. With increasing NG fraction, while the methane emissions increase, the equivalent CO2 emissions (cumulative greenhouse gas effect of CO2 and CH4) of the engine decrease. Increasing NG fraction also improves the brake thermal efficiency of the engine though NOx emissions increase. By optimizing the combustion phasing through control of the DI timing, brake thermal efficiencies of the order of ∼42% can be achieved. At high loads, advanced diesel DI timings typically correspond to the higher maximum cylinder pressure, maximum pressure rise rate, brake thermal efficiency and NOx emissions, and lower soot, CO, and CO2-equivalent emissions.


Author(s):  
David Oh ◽  
Jean-Sébastien Plante

A hydrogen-fueled two-stroke prototype demonstrator based on a 9.9 horsepower (7.4 kW) production gasoline marine outboard is presented, which, while matching the original engine’s rated power output on hydrogen, achieves a best-point gross indicated thermal efficiency (ITE) of 42.4% at the ICOMIA Mode 4 operating point corresponding to 80% and 71.6% of rated engine speed and torque, respectively. Brake thermal efficiency (BTE) at rated power is 32.3%. Preliminary exhaust gas measurements suggest that the engine could also meet the most stringent CARB 5-Star marine spark-ignition emission standards limiting HC+NOx emissions to 2.5 g/kWh without any after-treatment. Later fuel injection is found to improve thermal efficiency at the expense of increased NOx emissions and, at the extreme, increased cyclic variation. The mechanism for these observations is reasoned to be increasing charge stratification with the later timings. All these are realized in a cost-effective concept around a proven two-stroke base engine and a low-pressure, direct-injected gaseous hydrogen (LPDI GH2) system, which employs no additional fuel pump and is adapted uniquely from volume production components. This work outlines the pathway — including investigations of several fuel delivery strategies with limited success — leading to the current status including design; modeling with GT-POWER; delivery of lube oil; lubrication issues using hydrogen; and calibration sweeps. Experimental results comprising steady-state dynamometer performance, cylinder pressure traces, NOx emission measurements, as well as heat release analyses, support the reported numbers and the key finding that late fuel injection timing and charge stratification drive the high efficiencies and the NOx trade-off; this is discussed and forms the basis for future work.


1998 ◽  
Vol 120 (2) ◽  
pp. 284-288 ◽  
Author(s):  
M. A. Paisley ◽  
D. Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Sign in / Sign up

Export Citation Format

Share Document