An Optically-Accessible Combustion Apparatus for Direct-Injection Natural Gas Ignition Studies

Author(s):  
Mark A. Fabbroni ◽  
Stewart Xu Cheng ◽  
Vito Abate ◽  
James S. Wallace

Research investigating direct injection natural gas (DING) diesel engines shows many attractions in engine performance including higher thermal efficiency and higher power output as well as significant improvement of exhaust emissions. However, ignition of injected natural gas is difficult and requires some form of ignition assist, such as a diesel pilot or a glow plug. This paper introduces the experimental apparatus used for compression ignition engine studies in the Engine Research and Development Laboratory (ERDL) at University of Toronto. The apparatus consists of an optically accessible constant volume combustion bomb coupled to a single-cylinder Cooperative Fuel Research (CFR) engine through its spark plug port. The engine provides rapid compression to create realistic engine conditions in the combustion bomb and also scavenges the combustion products. During the engine compression process, the piston pushes the air from the engine cylinder to the constant volume combustion bomb, generating high-pressure, high-temperature initial conditions and a strong swirling air flow in the constant volume combustion bomb. Experiments were conducted to measure temperatures and pressures in the constant volume combustion bomb for a range of initial conditions. The experiments were complemented by numerically modeling the whole domain of the CFR engine cylinder, the constant volume combustion bomb, and the port connecting them using a modified KIVA-3V code. The code computes spatially and temporally resolved pressure, temperature and swirl intensity in the constant volume combustion bomb during the compression process. The experimental and the numerical results are in satisfactory agreement and provide validation of the initial conditions in the constant volume combustion bomb for subsequent studies of injection and ignition.

2020 ◽  
pp. 146808741989693
Author(s):  
Ankith Ullal ◽  
Youngchul Ra ◽  
Jeffrey D Naber ◽  
William Atkinson ◽  
Satoshi Yamada ◽  
...  

Pre-ignition in internal combustion engines is an abnormal combustion phenomenon which often results in structural damage to the engine. It occurs when an ignition event takes place in the combustion chamber before the designed ignition time. In this work, a numerical study was done to investigate the pre-ignition with potential application to natural gas marine engines. This was done by simulating experiments of lube oil–induced ignition and subsequent combustion in a constant volume combustion chamber using an in-house version of the KIVA4-CFD code. Initial conditions of the chamber gases are obtained from the pre-burn process of a known composition of C2H2/oxidizer mixture. Natural gas was injected from a single-hole injector at an injection temperature and pressure of 300 K and 105 Pa, respectively. A rotating fan was modeled, as is in the experimental setup. Oil droplet of known size and velocity is injected into the constant volume combustion chamber. For accurate prediction of oil droplet ignition, the computational cells that contain the droplets are to be refined. Combustion calculations are then carried out on the refined grid. Ignition delay times of both lube oil and methane/air mixtures were calculated. Parametric studies were also conducted by varying droplet conditions, and their results are also presented.


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


2016 ◽  
Vol 78 (6) ◽  
Author(s):  
Zulkifli Abdul Majid ◽  
Rahmat Mohsin ◽  
Abdul Hakim Shihnan

The performance and exhaust emission of 6 cylinder four stroke direct injection diesel dual fuel (DDF) engine were investigated, the duel fuel used is corn oil methyl esters consist of 5%, 10%, 15% and 20% blends with diesel and compressed natural gas (CNG). Experiment was conducted at a fixed compression ratio of 17.5:1 with variance of engine speed 1400, 1800, 2400 and 2600 rpm. Combination of Biodiesel and CNG showed a better result on engine performance in terms of horse power and engine torque compared to other types of tested fuel. The substantial decrease of 25.6 % in exhaust emission flue was observed, giving lower value of UHC and nitrogen oxide (NOx). However, when the fuel is blended with CNG, a poor performance on exhaust emission was recorded, which include carbon dioxide (CO2), carbon monoxide (CO), unburned hydrocarbon (UHC) and nitrogen oxide (NOx) due to presence of CNG in fuel. 


2003 ◽  
Vol 2003.78 (0) ◽  
pp. _3-43_-_3-44_
Author(s):  
Hideki NAKAGAWA ◽  
Kenji OHASHI ◽  
Takuji ISHIYAMA ◽  
Masahiro SHIOJI ◽  
Shunsaku NAKAI

2013 ◽  
Vol 315 ◽  
pp. 552-556 ◽  
Author(s):  
Shahrul Azmir Osman ◽  
Ahmad Jais Alimin ◽  
V.S. Liong

The use of natural gas as an alternative fuels are motivated from the impact in deteriorating quality of air and the energy shortage from petroleum products. Through retrofitting, CI engine runs on CNG, will be able to reduce the negative impact mainly on the use of petroleum products. However, this required the modification of the combustion chamber geometry by reducing the compression ratio to value that suits combustion of CNG. In this present studies, four different shapes and geometries of combustion chamber were designed and simulate using CFD package powered by Ansys workbench, where k-ε turbulence model was used to predict the flow in the combustion chamber. The results of turbulence kinetic energy, velocity vectors and streamline are presented. The enhancement of air-fuel mixing inside the engine cylinder can be observed, where the design with re-entrance and lower center projection provide better results compared to other combustion geometries designs.


Sign in / Sign up

Export Citation Format

Share Document