Waukesha 275GL Series NOx Control System Development and Performance Testing

Author(s):  
Jared J. Wentz

Dresser Waukesha’s 275GL engine series, released in 2009, included an Engine System Manager (ESM) to manage and control critical engine operations. These engines are typically used in mechanical drive applications for natural gas compression as well as power generation at 2500 to 3300 kWb (3400–4500 bhp). The 275GL is now being offered in a low NOx configuration designated the 275GL+, that features a NOx based Air/Fuel Ratio (AFR) control. Market analysis determined that an engine with lower NOx output emissions while maintaining peak performance is of high importance. Utilizing a traditional oxygen based AFR system has limitations when controlling emissions at extreme low NOx values. In order to meet these needs and maintain a consistent low NOx level, development of a control system that allows an engine to achieve these requirements was essential. A NOx sensor based control system was developed to control extremely low NOx values while accounting for engine wear, humidity and fuel changes. An oxygen based AFR system has limitations that make it difficult, if not impossible, to use this approach for extremely low NOx levels. Some of these limitations can be attributed to sensor signal masking due to exhaust gases and having to correlate O2 to NOx for the specific application. This new NOx sensing functionality enables robust control of specific NOx emissions at varying engine and environmental conditions, yielding a powerful addition to the ESM engine control system applied on the 275GL engine. The NOx control running with ESM allows for the engine to achieve 0.5 g/bhp-hr NOx levels while maintaining fuel efficiency, fuel tolerance, and turndown range. This paper discusses the key testing, results and performance of this development when implemented on the 275GL+ engine.

Author(s):  
Gregory W. Sorge ◽  
James K. von der Ehe

Dresser Waukesha’s 275GL engine family released in 2009 consists of a 214 liter (13,048 in3) 12 cylinder, and a 285 liter (17,398 in3) 16 cylinder engine derived from Waukesha’s ATGL family. These 1000 RPM engines are typically used in mechanical drive applications for natural gas compression at 2500 to 3300 kWb (3400–4500 bhp). Through market analysis and voice of customer (VOC) interviews, it was determined that lower Oxides of Nitrogen (NOx) output is essential for future engine sales in North America. Meeting this requirement with a minimal impact to fuel efficiency, fuel tolerance, turndown range, and altitude capability were also desired. To meet the lower NOx requirement, combustion was improved using Computational Fluid Dynamics (CFD) modeling and Design of Experiments (DoE) tools. To assure the low NOx emissions were maintained throughout the desired operating regime, an NOx sensor based air/fuel ratio control system was developed. This new NOx control capability is an enhancement to the Dresser Waukesha ESM™ engine control system. The result is an engine family that consistently meets stringent 0.5 g/bhp-hr NOx levels while maintaining fuel efficiency, fuel tolerance, and turndown range. Reduced combustion pressure in the 275GL Low NOx engine has also allowed a power increase over the original 275GL engine. This paper will discuss the testing and results of this development.


2010 ◽  
Vol 20-23 ◽  
pp. 1084-1090 ◽  
Author(s):  
Wen Long

Manufacturing Execution System (MES) links plan management and workshop control in an enterprise, which is an integrative management and control system of workshop production oriented to manufacturing process. To overcome the difficulties of traditional software development method, development of MES based on component is adopted to prompt development efficiency and performance of MES, which can be more reconstructing, reuse, expansion and integration, and MES domain analysis driven by ontology is investigated in detail. MES domain analysis driven by ontology is feasible and efficient through developing a pharmaceutics MES which applied in a pharmaceutics manufacturing factory.


2009 ◽  
Vol 34 (4) ◽  
pp. 1638-1646 ◽  
Author(s):  
E.M. Stewart ◽  
A.E. Lutz ◽  
S. Schoenung ◽  
M. Chiesa ◽  
J.O. Keller ◽  
...  

Author(s):  
Heeseong Kim ◽  
Taehyun Shim ◽  
Byungjun Sung

Abstract This paper investigates an effectiveness of vehicle dynamic control (VDC) system based on torque vectoring technique using in-wheel-motors to improve the performance of articulated vehicle systems. A 10 degree-of-freedom (DOF) articulated vehicle model including a tractor and a single axle trailer has been developed and its responses are validated with commercial vehicle software of Trucksim. This model includes a nonlinear tire model (MF tire), a hydraulic damping at the hitch, and a traction system using in-wheel-motors at the trailer axle. In this paper, a yaw control system is developed to track the reference yaw rate with application of yaw moment at the trailer axle using torque distribution of in-wheel-motors. The effectiveness of the proposed control system is validated through simulation of sinusoidal steering maneuver on high mu and slippery road conditions. The simulation results show that in-wheel-motors can improve safety and performance of articulate vehicle systems.


Author(s):  
Daniel G. Cole

This paper discusses adaptive identification and control (AID&C) techniques to enable automated online identification and control of SMRs. Adaptive system ID allows engineers to rapidly measure system dynamics, calibrate sensors channels, determine loop processes, and quantify actuator authority for the various reactor control loops. Adaptive control can automatically tune these loops and adjust plant processes to optimize conditions for peak performance and power production. Another advantage of the adaptive ID and control approach is that these tools can be used during reactor operation to monitor active and passive components. Adaptive system ID techniques are used to measure loop-transfer characteristics. Presented is a practical approach that uses adaptive model-matching tools to identify the coprime factors of the local loops. This has the advantage over model based approaches since coprime factors can be identified on the real system using real data. Adaptive control enables auto-tuning of controller parameters to meet operational specifications. Using the coprime factors, all controllers that stabilize the plant can be parametrized by a free Q-parameter that can be changed to meet control system objectives and improve performance, and the tuning is performed using adaptive techniques. The controller architecture presented provides several desirable and necessary features: e.g., a default fail-safe mode of operation, stability in the presence of communications failures, guaranteed stability, and robustness. An advantage of the adaptive structure presented here is that control system stability can be guaranteed, even during adaptation by ensuring certain norm conditions on the Q-parameter and estimated plant uncertainty. More importantly, the Q-parameter can be monitored during operation, providing a real-time estimate of the changes in the plant resulting from changes in the reactor itself. This signal monitors the dynamics of each loop, providing information about the reactor from the perspective of the control process. Online monitoring using AID&C can be used to better track control system transients that result in reactor trip, thus avoiding undesirable reactor trips and diversion events. And, there is a potential that the system can better adapt to changing operating conditions during plant transients including load following procedures.


1982 ◽  
Vol 104 (1) ◽  
pp. 41-48
Author(s):  
C. R. Burrows

An assessment is made of a surveillance-radar control system designed to provide a sector-search capability and continuous control of antenna speed without unwanted torque-reaction on the supporting mast. These objectives are attained by utilizing regenerative braking, and control is exercised through Perbury CVTs. A detailed analysis of the system is given. The models derived for the Perbury CVTs supplement the qualitative data contained in earlier papers. Some results from a computer simulation are presented. Although the paper is concerned with a particular problem, the analysis of the CVTs, and the concept of using energy transfer to control large inertial loads, are of more general interest.


2013 ◽  
Vol 401-403 ◽  
pp. 1005-1009
Author(s):  
Zheng Tao Yan ◽  
Shao Chun Ding

Multi-exciter vibration test control system is the core of the multiple shaker vibration test, and multi-exciter vibration test control technology has become the hot point of vibration test field. Based on coherence principles, the coherence of two exciters control system was tested, the introduction of noise signal reduces the control coherence between the response spectrum and partial coherence between response and the corresponding drive signal. By means of increasing the coherence between drive signals, the control coherence between the response spectrum can be raised and control performance of system can be Improved. The above means could provide technical support for multi-exciter vibration test system development.


2011 ◽  
Vol 188 ◽  
pp. 236-240
Author(s):  
Cong Ling Zhu ◽  
Wei Zhu Jin ◽  
D.R. Ci ◽  
Zhi Gang Ding ◽  
S.T. Wu

Measurement and control system is the key equipment for testing and analyzing of the dynamic characteristics for a nonlinear absorber.It is the necessary means of accomplishing to design the rationalization of the nonlinear absorber. This article has conducted the detailed research in the new development of absorber test equipment to the desing of system structure, The constituent of software system, and The process design, and The development of the computer program based on virtual techniques. Debugging and running this software system have shown that the precision and reliability of it have been proved.


Sign in / Sign up

Export Citation Format

Share Document