Engine Capability Prediction for SI Engine Fueled With Syngas

Author(s):  
Hui Xu ◽  
Leon A. LaPointe

There are increasing interests in converting solid waste or lignocellulosic biomass into gaseous fuels and using reciprocating internal combustion engine to generate electricity. A widely used technique is gasification. Gasification is a process where the solid fuel and air are introduced to a partial oxidation environment, and generate combustible gaseous called synthesis gas or syngas. Converting solid waste into gaseous fuel can reduce landfill and create income for process owners. However it can be very challenging to use syngas on a gaseous fueled spark ignited engine, such as a natural gas (NG) engine. NG engines are typically developed with pipeline quality natural gas (PQNG). NG engines can operate at lean burn spark ignited (LBSI), or stoichiometric with EGR spark ignited (SESI) conditions. This work discusses the LBSI engine condition. NG engines can perform very differently when fueled with nonstandard gaseous fuels such as syngas without appropriate tuning. It is necessary to evaluate engine performance in terms of combustion duration, relative knock propensity and NOx emissions for such applications. Due to constraints in time and resources it is often not feasible to test such fuel blends in the laboratory. An analytical method is needed to predict engine performance in a timely manner. This study investigated the possibility of using syngas on a spark ignited engine developed with PQNG. Engine performance was predicted using in house developed models and PQNG as the reference fuel. Laminar flame speed (LFS), adiabatic flame temperature (AFT) and Autoignition interval (AI) are used to predict combustion duration, engine out NOx and engine knock propensity relative to NG at the target Lambda values. Single cylinder research engine data obtained under lean burn conditions fueled with PQNG was selected as the baseline. LFS, AFT and AI of syngas were computed at reference conditions. Lambda of operation was predicted for syngas to provide the same burn rate as NG at the reference Lambda value for NG. Analysis shows that, using syngas at the selected Lambda, the engine can have less engine out NOx emissions and less knock propensity relative to NG at the same speed and load. Modifications to fuel system components may be required to avoid engine derate.

Author(s):  
Hui Xu ◽  
Leon A. LaPointe

Abstract There are increasing interests in converting solid waste or lignocellulosic biomass into gaseous fuels and using reciprocating internal combustion engine to generate electricity. A widely used technique is gasification. Gasification is a process where the solid fuel and air are introduced to a partial oxidation environment, and generate combustible gaseous called synthesis gas or syngas. Converting solid waste into gaseous fuel can reduce landfill and create income for process owners. However, it can be very challenging to use syngas on a gaseous fueled spark ignited (SI) engine, such as a natural gas (NG) engine. NG engines are typically developed with pipeline quality natural gas (PQNG). NG engines can operate at lean burn spark ignited (LBSI), or stoichiometric with exhaust gas recirculation (EGR) spark ignited (SESI) conditions. This work discusses the LBSI engine condition. NG engines can perform very differently when fueled with nonstandard gaseous fuels such as syngas without appropriate tuning. It is necessary to evaluate engine performance in terms of combustion duration, relative knock propensity, and NOx emissions for such applications. Due to constraints in time and resources it is often not feasible to test such fuel blends in the laboratory. An analytical method is needed to predict engine performance in a timely manner. This study investigated the possibility of using syngas on an SI engine developed with PQNG. Engine performance was predicted using in house developed models and PQNG as the reference fuel. Laminar flame speed (LFS), adiabatic flame temperature (AFT), and auto-ignition interval (AI) are used to predict combustion duration, engine out NOx and engine knock propensity relative to NG at the target lambda values. Single cylinder research engine data obtained under lean burn conditions fueled with PQNG was selected as the baseline. LFS, AFT, and AI of syngas were computed at reference conditions. Lambda of operation was predicted for syngas to provide the same burn rate as NG at the reference lambda value for NG. Analysis shows that, using syngas at the selected lambda, the engine can have less engine out NOx emissions and less knock propensity relative to NG at the same speed and load. Modifications to fuel system components may be required to avoid engine derate.


Author(s):  
Hui Xu ◽  
Leon A. LaPointe

Natural gas has been widely used in reciprocating engines for various applications such as automobile, electricity generation, and gas compression. It is in the public interest to burn fuels more efficiently and at lower exhaust emissions. Natural gas is very suitable to serve this purpose due to its clean combustion, small carbon footprint, and, with recent breakthroughs in drilling technologies, increased availability and low cost. Natural gas can be used in lean burn spark ignited (LBSI) or stoichiometric EGR spark ignited (SESI) engines. Selection of either LBSI or SESI requires accommodation of requirements such as power output/density, engine efficiency, emissions, knock margin, and cost. The work described in this paper investigated the feasibility of operating an engine originally built as an LBSI under SESI conditions. Analytical tools and workflow developed by Cummins, Inc. are used in this study. The tools require fundamental combustion properties as inputs, including laminar flame speed (LFS), adiabatic flame temperature (AFT) and autoignition interval (AI). These parameters provide critical information about combustion duration, engine out NOx, and relative knock propensity. An existing LBSI engine operating at its as released lambda was selected as baseline. The amount of EGR for the SESI configuration was selected so that it would have the same combustion duration as that of the LBSI at its reference lambda. One dimensional (1D) cycle simulations were conducted under both SESI and LBSI conditions assuming constant output power, compression ratio, volumetric efficiency, heat release centroid and brake mean effective pressure (BMEP). The 1D cycle simulations provide peak cylinder pressure (PCP) and peak unburned zone temperature (PUZT) under LBSI and SESI conditions. The results show that the SESI configuration has lower PCP but higher peak unburned zone temperature than that of the LBSI for the same output power. Also, for the same combustion duration, SESI has higher AFT than that of LBSI, resulting in higher engine out NOx emissions. The SESI configuration has shorter AI than that of LBSI engine, or smaller relative knock margin. Reduction of output power and emissions aftertreatment in the form of a three way catalyst (TWC) is required to operate under SESI engine conditions.


Author(s):  
Hui Xu ◽  
Leon A. LaPointe

Natural gas (NG) has been widely used in reciprocating engines for various applications such as automobile, electricity generation, and gas compression. It is in the public interest to burn fuels more efficiently and at lower exhaust emissions. NG is very suitable to serve this purpose due to its clean combustion, small carbon footprint, and, with recent breakthroughs in drilling technologies, increased availability and low cost. NG can be used in lean burn spark-ignited (LBSI) or stoichiometric EGR spark-ignited (SESI) engines. Selection of either LBSI or SESI requires accommodation of requirements such as power output/density, engine efficiency, emissions, knock margin, and cost. The work described in this paper investigated the feasibility of operating an engine originally built as an LBSI under SESI conditions. Analytical tools and workflow developed by Cummins, Inc., are used in this study. The tools require fundamental combustion properties as inputs, including laminar flame speed (LFS), adiabatic flame temperature (AFT), and auto-ignition interval (AI). These parameters provide critical information about combustion duration, engine out NOx, and relative knock propensity. An existing LBSI engine operating at its as released lambda was selected as baseline. The amount of exhaust gas recirculation (EGR) for the SESI configuration was selected so that it would have the same combustion duration as that of the LBSI at its reference lambda. One-dimensional (1D) cycle simulations were conducted under both SESI and LBSI conditions assuming constant output power, compression ratio, volumetric efficiency, heat release centroid, and brake mean effective pressure (BMEP). The 1D cycle simulations provide peak cylinder pressure (PCP) and peak unburned zone temperature (PUZT) under LBSI and SESI conditions. The results show that the SESI configuration has lower PCP but higher PUZT than that of the LBSI for the same output power. Also, for the same combustion duration, SESI has higher AFT than that of LBSI, resulting in higher engine out NOx emissions. The SESI configuration has shorter AI than that of LBSI engine, or smaller relative knock margin. Reduction of output power and emissions aftertreatment in the form of a three-way catalyst (TWC) is required to operate under SESI engine conditions.


Author(s):  
Hui Xu ◽  
Leon A. LaPointe ◽  
Robin J. Bremmer

Gaseous fueled spark ignited (SI) engines are often developed using pipeline quality natural gas as the fuel. However, natural gas engines are occasionally expected by customers to accommodate different fuel compositions when deployed in the field. Depending on the source or production processing of the fuel and the ambient conditions, gaseous fuels can have different levels of heavy hydrocarbons and/or significant levels of diluents when compared to natural gas. In recent years, there are increasing interests in using synthesis gas (syngas) from renewable sources in gaseous fueled spark ignition engines. This work investigated syngas compositions from different production processes and describes a methodology to predict engine performance using syngas. Syngas composition variations can provide different laminar flame speeds (LFS), which can result in changes in combustion burn rate, heat release rate and knock likelihood, if the engine combustion process is not optimized appropriately. It is challenging to obtain LFS data at the high pressure and temperature conditions that are characteristic of the piston engine combustion process. It has proven to be effective to employ a chemical kinetics solver using an appropriate chemical kinetics mechanism to obtain LFS values under piston engine combustion conditions. Alternative chemical kinetics mechanisms were investigated to identify one which best characterized combustion performance relative to detailed rig and engine measurements. With this appropriate chemical kinetics mechanism, LFS results are now used to guide natural gas engine combustion tuning when using syngas as a fuel. Engine performance is predicted in terms of NOx emissions and knock likelihood using the in-house developed methodology.


Author(s):  
Munidhar Biruduganti ◽  
Sreenath Gupta ◽  
Bipin Bihari ◽  
Raj Sekar

Air Separation Membranes (ASM) could potentially replace Exhaust Gas Recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of Nitrogen Enriched Air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single cylinder spark ignited natural gas engine. Low Temperature Combustion (LTC) is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA for different engine loads. Enrichment beyond this level degraded engine performance in terms of power density, Brake Thermal Efficiency (BTE), and unburned hydrocarbon (UHC) emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. The parasitic loss associated with the usage of ASM technology is presented. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio (Ψ) increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA could pave the pathway for realizing lower NOx emissions with a slight penalty in BTE.


Author(s):  
Munidhar Biruduganti ◽  
Sreenath Gupta ◽  
Bipin Bihari ◽  
Steve McConnell ◽  
Raj Sekar

Air Separation Membranes (ASM) could potentially replace Exhaust Gas Recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of Nitrogen Enriched Air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single cylinder spark ignited natural gas engine. Low Temperature Combustion (LTC) is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, Brake Thermal Efficiency (BTE), and unburned hydrocarbon (UHC) emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition (SI) was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from ψ: 1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio (Ψ) increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source such as LI could pave the pathway for realizing lower NOx emissions with a slight penalty in BTE.


Author(s):  
Munidhar Biruduganti ◽  
Sreenath Gupta ◽  
Bipin Bihari ◽  
Steve McConnell ◽  
Raj Sekar

Air separation membranes (ASMs) could potentially replace exhaust gas recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of nitrogen-enriched air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single-cylinder spark-ignited natural gas engine. Low temperature combustion is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, brake thermal efficiency (BTE), and unburned hydrocarbon emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from ψ:1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio (Ψ) increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source, such as LI, could pave the pathway for realizing lower NOx emissions with a slight penalty in BTE.


Author(s):  
Andreas Wimmer ◽  
Eduard Schnessl

High demands are placed on large gas engines in the areas of performance, fuel consumption and emissions. In order to meet all these demands, it is necessary to operate the engine in its optimal range. At high engine loads the optimal operation range becomes narrower as the engine comes closer to the knocking or to the misfire limit. The ambient conditions are of increasing importance in this range of operation. Variations in humidity influence the engine’s burn rate characteristics. An increase in humidity reduces the burn rate and increases the combustion duration. This increase in combustion duration has the same effect as retarding the time of ignition. Thus the thermal efficiency is reduced. Additionally, the engine is more likely to misfire as humidity increases. The cylinder temperature affects the engine fuel efficiency, knocking, exhaust gas temperature and particularly NOx emission. An increase in manifold air temperature results in higher NOx emission, heat transfer and knocking tendency. To avoid knocking, the time of ignition must be retarded resulting in lower engine efficiency. In this paper the effects of changes in humidity and temperature of the intake air on engine performance were examined in a lean burn pre-chamber natural gas engine. Tests on a single cylinder research engine were carried out. Effects on knocking and misfire limit, NOx emissions and fuel consumption were investigated depending on engine load. The interpretation of the results was supported by an extended analysis of losses.


Author(s):  
Baine Breaux ◽  
Chris Hoops ◽  
William Glewen

The intensity and structure of in-cylinder turbulence is known to have a significant effect on internal combustion engine performance. Changes in flow structure and turbulence intensity result in changes to the rate of heat release, cylinder wall heat rejection, and cycle-to-cycle combustion variability. This paper seeks to quantify these engine performance consequences and identify fundamental similarities across a range of high-speed, medium-bore, lean-burn, spark-ignited reciprocating engines. In-cylinder turbulence was manipulated by changing the extent of intake port-induced swirl as well as varying the level of piston-generated turbulence. The relationship between in-cylinder turbulence and engine knock is also discussed. Increasing in-cylinder turbulence generally reduces combustion duration, but test results reveal that increasing swirl beyond a critical point can cause a lengthening of burn durations and greatly reduced engine performance. This critical swirl level is related to the extent of small-scale, piston generated turbulence present in the cylinder. Increasing in-cylinder turbulence generally leads to reduced cycle-to-cycle variability and increased detonation margin. The overall change in thermal efficiency was dependent on the balance of these factors and wall heat transfer, and varied depending on the operational constraints for a given engine and application. Single cylinder engine test data, supported with three dimensional CFD results are used to demonstrate and explain these basic combustion engine principles.


Author(s):  
Gu¨nther Herdin ◽  
Friedrich Gruber ◽  
Johann Klausner ◽  
Reinhard Robitschko ◽  
Diethard Plohberger

In the utilization of gas mixtures with high amounts of H2 there is a great number of applications of such special gases, for example several gases that result from pyrolysis or the gasification of biomass or thermally utilizable waste substances. What is special about gases containing H2 is the shifting of the lean-burn limit towards greater amounts of excess air than is the case with natural gas. This effect causes the mean combustion chamber temperatures to sink and the NOx emissions are reduced to a very low level. Depending on the amount of hydrogen and other gas components it is possible to attain NOx values of under 5 ppm. Also very interesting is the property of these H2-rich gas mixtures to have a neutral influence on the degree of efficiency (even with extremely high amounts of excess air). The background of this property lies in the considerably higher laminar flame speed of hydrogen. Especially in the lower and medium load range this effect can be utilized directly; in this regard it was possible to measure an efficiency of up to 2% points better with operation using pure hydrogen compared with NG. Higher BMEPs are also only possible to a limited extent with extreme lean-burn operation because the knocking limit is reached. Furthermore, the dimensioning of the turbocharger is becoming more and more difficult because the exhaust gas temperature upstream from the turbine sinks and as a result also the thermal energy is available only to a limited degree. When dealing with high amounts of H2, from the standpoint of operational reliability it is necessary to modify the mixture formation before the TC position to the pressure side position upstream from the intake valve, because otherwise load fluctuations could lead to undesired rich mixtures in the inlet side. As a result, backfiring could occur that could also cause engine damage and that could be hazardous for personnel. From the viewpoint of GE Jenbacher H2 technology can be applied relatively quickly to reduce NOx emissions. Especially when considering the “life cycle costs”, this potential solution is superior to concepts functioning on the basis of stoichiometric combustion. The next step that can be mentioned is the concept of fuel-reforming integrated in the engine — here a part of the exhaust gas energy is used to reform a relatively small amount of natural gas to a CH4/H2/CO mixture. With this concept, alongside the dramatic reduction of NOx emissions to the level of fuel cells, the degree of efficiency can be improved by about 2 to 3% points by means of “energy shifting”.


Sign in / Sign up

Export Citation Format

Share Document