Internal Residual vs. Elevated Intake Temperature: How the Method of Charge Preheating Affects the Phasing Limitations of HCCI Combustion

Author(s):  
Laura Manofsky Olesky ◽  
Jiri Vavra ◽  
Dennis Assanis ◽  
Aristotelis Babajimopoulos

Homogeneous charge compression ignition (HCCI) has the potential to reduce both fuel consumption and NOx emissons compared to normal spark-ignited (SI) combustion. For a relatively low compression ratio engine, high unburned temperatures are needed to initiate HCCI combustion, which is achieved with large amounts of internal residual or by heating the intake charge. The amount of residual in the combustion chamber is controlled by a recompression valve strategy, which relies on negative valve overlap (NVO) to trap residual gases in the cylinder. A single-cylinder research engine with fully-flexible valve actuation is used to explore the limits of HCCI combustion phasing at a constant load of ∼3 bar IMEPg. This is done by performing two individual sweeps of a) internal residual fraction (via NVO) and b) intake air temperature to control combustion phasing. It is found that increasing both variables advances the phasing of HCCI combustion, which leads to increased NOx emissions and a higher ringing intensity. On the other hand, a reduction in these variables leads to greater emissions of CO and HC, as well as a decrease in combustion stability. A direct comparison of the two sweeps suggests that the points with elevated intake temperatures are more prone to ringing as combustion is advanced and less prone to instability and misfire as combustion is retarded. This behavior can be explained by compositional differences (air vs. EGR dilution) which lead to variations in burn rate and peak temperature. As a final study, two additional NVO sweeps are performed while holding intake temperature constant at 30°C and 90°C. Again, it is seen that at higher intake temperatures, combustion is more susceptible to ringing at advanced timings and more resistant to instability/misfire at retarded timings.

Author(s):  
Laura Manofsky Olesky ◽  
Jiri Vavra ◽  
Dennis Assanis ◽  
Aristotelis Babajimopoulos

Homogeneous charge compression ignition (HCCI) has the potential to reduce both fuel consumption and NOx emissions compared to normal spark-ignited (SI) combustion. For a relatively low compression ratio engine, high unburned temperatures are needed to initiate HCCI combustion, which is achieved with large amounts of internal residual or by heating the intake charge. The amount of residual in the combustion chamber is controlled by a recompression valve strategy, which relies on negative valve overlap (NVO) to trap residual gases in the cylinder. A single-cylinder research engine with fully-flexible valve actuation is used to explore the limits of HCCI combustion phasing at a load of ∼3 bar gross indicated mean effective pressure (IMEPg). This is done by performing two individual sweeps of (a) internal residual fraction (via NVO) and (b) intake air temperature to control combustion phasing. It is found that increasing both of these variables advances the phasing of HCCI combustion, which leads to increased NOx emissions and a higher ringing intensity. On the other hand, a reduction in these variables leads to greater emissions of CO and HC, as well as a decrease in combustion stability. A direct comparison of the two sweeps suggests that the points with elevated intake temperatures are more prone to ringing as combustion is advanced and less prone to instability and misfire as combustion is retarded. This behavior can be explained by compositional differences (air versus residual gas dilution) which lead to variations in burn rate and peak temperature. As a final study, two additional NVO sweeps are performed while holding intake temperature constant at 30 °C and 90 °C. Again, it is seen that for higher intake temperatures, combustion is more susceptible to ringing at advanced timings and more resistant to instability/misfire at retarded timings.


Author(s):  
L Shi ◽  
K Deng ◽  
Y Cui

This paper presents a scheme to achieve diesel-fuelled homogeneous charge compression ignition (HCCI) combustion, which is to inject diesel fuel directly into the cylinder at near intake top dead centre and adjust the valve overlap to obtain a higher internal exhaust gas recirculation (EGR) in the cylinder. The effects of the engine load, speed, inlet temperature, external EGR, and internal EGR on HCCI combustion and emission were studied. The combustion stability of HCCI combustion was also studied by statistics analysis. The results show the following: when the engine load or inlet temperature increases, which results in a higher in-cylinder temperature, the start of combustion (SOC) is advanced; the ignition time of HCCI relative to the engine crank angle is retarded when the engine speed increases; inert gases contained in the EGR can slow the chemical reaction rate, which can delay the auto ignition time; for the diesel-fuelled HCCI, increasing the negative valve overlap (NVO) makes the SOC advanced and makes the combustion stability better at low loads and worse at high loads. The emission results show that the nitrogen oxides (NOx) and smoke emissions are very low, and a large NVO can decrease the smoke emission but not benefit the NOx emission at high loads for diesel-fuelled HCCI combustion.


Author(s):  
Seyfi Polat ◽  
Hamit Solmaz ◽  
Ahmet Uyumaz ◽  
Alper Calam ◽  
Emre Yılmaz ◽  
...  

Abstract In this study, the effects of negative valve overlap (NVO) on homogenous charge compression ignition (HCCI) combustion and engine performance were experimentally investigated. A four stroke, single cylinder, port injection HCCI engine was operated at −16 deg crank angle (CA), −8 deg CA, and +8 deg CA valve overlap values and different lambda values and engine speeds at wide open throttle. RON40 and RON60 were used as test fuels in view of combustion and performance characteristics in HCCI mode. The variations of indicated mean effective pressure (IMEP), residual gas, CA50, indicated thermal efficiency (ITE), indicated specific fuel consumption (ISFC), maximum pressure rise rate (MPRR) and ringing intensity (RI) were observed on HCCI combustion. The results showed that NVO caused to trap residual gases in the combustion chamber. Hot residual gases showed heating and dilution effect on HCCI combustion. Combustion was retarded with the presence of residual gas at −16 deg CA NVO. Test results showed that higher imep and maximum in-cylinder pressure were obtained with RON60 according to RON40. As expected, CA50 was obtained later with RON60 compared to RON40 due to more resistance of auto-ignition. RON60 residual gas prevented the rapid and sudden combustion due to higher heat capacity of charge mixture. RI decreased with the usage of RON60 compared to RON40. Significant decrease was seen on RI with RON60 especially at lower lambda values. It was seen that HCCI combustion can be controlled with NVO and operating range of HCCI engines can be extended.


2015 ◽  
Vol 161 (2) ◽  
pp. 73-77
Author(s):  
Jacek HUNICZ ◽  
Michał GĘCA ◽  
Paweł KORDOS ◽  
Alejandro MEDINA

HCCI (homogeneous charge compression ignition) combustion is initiated by compression temperature and is independent of spark discharge. However, spark discharge can be applied under certain conditions to achieve hybrid combustion, where combustion by flame propagation is followed by auto-ignition of the unburned mixture. Spark assist can be applied to improve combustion stability at low loads or to reduce pressure rise rates under high load regime. In the current study variable spark ignition timing was applied for stoichiometric HCCI combustion, achieved using negative valve overlap technique. Under investigated conditions increase of nitrogen oxides emissions, due to flame propagation, was not observed. To provide more insight into combustion evolution, double Wiebe function was fitted to experimental heat release rates. It was found that only less than 10% of mixture was burned by flame propagation, even for very advanced spark discharge.


2022 ◽  
pp. 1-8
Author(s):  
Ashwin Salvi ◽  
Reed Hanson ◽  
Rodrigo Zermeno ◽  
Gerhard Regner ◽  
Mark Sellnau ◽  
...  

Abstract Gasoline compression ignition (GCI) is a cost-effective approach to achieving diesel-like efficiencies with low emissions. The fundamental architecture of the two-stroke Achates Power Opposed-Piston Engine (OP Engine) enables GCI by decoupling piston motion from cylinder scavenging, allowing for flexible and independent control of cylinder residual fraction and temperature leading to improved low load combustion. In addition, the high peak cylinder pressure and noise challenges at high-load operation are mitigated by the lower BMEP operation and faster heat release for the same pressure rise rate of the OP Engine. These advantages further solidify the performance benefits of the OP Engine and emonstrate the near-term feasibility of advanced combustion technologies, enabled by the opposed-piston architecture. This paper presents initial results from a steady state testing on a brand new 2.7L OP GCI multi-cylinder engine designed for light-duty truck applications. Successful GCI operation calls for high compression ratio, leading to higher combustion stability at low-loads, higher efficiencies, and lower cycle HC+NOX emissions. Initial results show a cycle average brake thermal efficiency of 31.7%, which is already greater than 11% conventional engines, after only ten weeks of testing. Emissions results suggest that Tier 3 Bin 160 levels can be achieved using a traditional diesel after-treatment system. Combustion noise was well controlled at or below the USCAR limits. In addition, initial results on catalyst light-off mode with GCI are also presented.


2019 ◽  
Vol 22 (1) ◽  
pp. 165-183 ◽  
Author(s):  
Oudumbar Rajput ◽  
Youngchul Ra ◽  
Kyoung-Pyo Ha ◽  
You-Sang Son

Engine performance and emissions of a six-stroke gasoline compression ignition engine with a wide range of continuously variable valve duration control were numerically investigated at low engine load conditions. For the simulations, an in-house three-dimensional computational fluid dynamics code with high-fidelity physical sub-models was used, and the combustion and emission kinetics were computed using a reduced kinetics mechanism for a 14-component gasoline surrogate fuel. Variation of valve timing and duration was considered under both positive valve overlap and negative valve overlap including the rebreathing of intake valves via continuously variable valve duration control. Close attention was paid to understand the effects of two additional strokes of the engine cycle on the thermal and chemical conditions of charge mixtures that alter ignition, combustion and energy recovery processes. Double injections were found to be necessary to effectively utilize the additional two strokes for the combustion of overly mixed lean charge mixtures during the second power stroke. It was found that combustion phasing in both power strokes is effectively controlled by the intake valve closure timing. Engine operation under negative valve overlap condition tends to advance the ignition timing of the first power stroke but has minimal effect on the ignition timing of second power stroke. Re-breathing was found to be an effective way to control the ignition timing in second power stroke at a slight expense of the combustion efficiency. The operation of a six-stroke gasoline compression ignition engine could be successfully simulated. In addition, the operability range of the six-stroke gasoline compression ignition engine could be substantially extended by employing the continuously variable valve duration technique.


Author(s):  
Ashwin Salvi ◽  
Reed Hanson ◽  
Rodrigo Zermeno ◽  
Gerhard Regner ◽  
Mark Sellnau ◽  
...  

Gasoline compression ignition (GCI) is a cost-effective approach to achieving diesel-like efficiencies with low emissions. Traditional challenges with GCI arise at low-load conditions due to low charge temperatures causing combustion instability and at high-load conditions due to peak cylinder pressure and noise limitations. The fundamental architecture of the two-stroke Achates Power Opposed-Piston Engine (OP Engine) enables GCI by decoupling piston motion from cylinder scavenging, allowing for flexible and independent control of cylinder residual fraction and temperature leading to improved low load combustion. In addition, the high peak cylinder pressure and noise challenges at high-load operation are mitigated by the lower BMEP operation and faster heat release for the same pressure rise rate of the OP Engine. These advantages further solidify the performance benefits of the OP Engine and demonstrate the near-term feasibility of advanced combustion technologies, enabled by the opposed-piston architecture. This paper presents initial results from a steady state testing on a brand new 2.7L OP GCI multi-cylinder engine. A part of the recipe for successful GCI operation calls for high compression ratio, leading to higher combustion stability at low-loads, higher efficiencies, and lower cycle HC+NOx emissions. In addition, initial results on catalyst light-off mode with GCI are also presented. The OP Engine’s architectural advantages enable faster and earlier catalyst light-off while producing low emissions, which further improves cycle emissions and fuel consumption over conventional engines.


Author(s):  
Sok Ratnak ◽  
Jin Kusaka ◽  
Yasuhiro Daisho ◽  
Kei Yoshimura ◽  
Kenjiro Nakama

Gasoline Direct Injection Homogeneous Charge Compression (GDI-HCCI) combustion is achieved by closing early the exhaust valves for trapping hot residual gases combined with direct fuel injection. The combustion is chemically controlled by multi-point auto-ignition which its main combustion phase can be controlled by direct injection timing of fuel. This work investigates the effect of single pulse injection timing on a supercharged GDI-HCCI combustion engine by using a four-stroke single cylinder engine with a side-mounted direct fuel injector. Injection of primary reference fuel PRF90 under the near-stoichiometric-boosted condition is studied. The fuel is injected during negative valve overlap (NVO) or recompression period for fuel reformation under low oxygen concentration and the injection is retarded to intake stroke for the homogeneous mixture. It is found that the early fuel injection in NVO period advances the combustion phasing compared with the retarded injection in the intake stroke. Noticeable slower combustion rate from intake stroke fuel injection is obtained compared with the NVO injection due to charge cooling effect. Zero-dimensional combustion simulations with multiple chemical reaction mechanisms are simulated to provide chemical understanding from the effect of fuel injection timing on intermediate species generations. The species such as C2H4, C3H6, CH4, and H2 are found to be formed during the NVO injection period from the calculations. The effects of single pulse injection timings on combustion characteristics such pressure rise rate, combustion stability, and emissions are also discussed in this study.


2014 ◽  
Vol 87 (4) ◽  
pp. 341-353 ◽  
Author(s):  
Yong Gui ◽  
Kangyao Deng ◽  
Min Xu ◽  
Lei Shi ◽  
Youcheng Sun

Sign in / Sign up

Export Citation Format

Share Document