INITIAL RESULTS ON A NEW LIGHT-DUTY 2.7L OPPOSED-PISTON GASOLINE COMPRESSION IGNITION MULTI-CYLINDER ENGINE

2022 ◽  
pp. 1-8
Author(s):  
Ashwin Salvi ◽  
Reed Hanson ◽  
Rodrigo Zermeno ◽  
Gerhard Regner ◽  
Mark Sellnau ◽  
...  

Abstract Gasoline compression ignition (GCI) is a cost-effective approach to achieving diesel-like efficiencies with low emissions. The fundamental architecture of the two-stroke Achates Power Opposed-Piston Engine (OP Engine) enables GCI by decoupling piston motion from cylinder scavenging, allowing for flexible and independent control of cylinder residual fraction and temperature leading to improved low load combustion. In addition, the high peak cylinder pressure and noise challenges at high-load operation are mitigated by the lower BMEP operation and faster heat release for the same pressure rise rate of the OP Engine. These advantages further solidify the performance benefits of the OP Engine and emonstrate the near-term feasibility of advanced combustion technologies, enabled by the opposed-piston architecture. This paper presents initial results from a steady state testing on a brand new 2.7L OP GCI multi-cylinder engine designed for light-duty truck applications. Successful GCI operation calls for high compression ratio, leading to higher combustion stability at low-loads, higher efficiencies, and lower cycle HC+NOX emissions. Initial results show a cycle average brake thermal efficiency of 31.7%, which is already greater than 11% conventional engines, after only ten weeks of testing. Emissions results suggest that Tier 3 Bin 160 levels can be achieved using a traditional diesel after-treatment system. Combustion noise was well controlled at or below the USCAR limits. In addition, initial results on catalyst light-off mode with GCI are also presented.

Author(s):  
Ashwin Salvi ◽  
Reed Hanson ◽  
Rodrigo Zermeno ◽  
Gerhard Regner ◽  
Mark Sellnau ◽  
...  

Gasoline compression ignition (GCI) is a cost-effective approach to achieving diesel-like efficiencies with low emissions. Traditional challenges with GCI arise at low-load conditions due to low charge temperatures causing combustion instability and at high-load conditions due to peak cylinder pressure and noise limitations. The fundamental architecture of the two-stroke Achates Power Opposed-Piston Engine (OP Engine) enables GCI by decoupling piston motion from cylinder scavenging, allowing for flexible and independent control of cylinder residual fraction and temperature leading to improved low load combustion. In addition, the high peak cylinder pressure and noise challenges at high-load operation are mitigated by the lower BMEP operation and faster heat release for the same pressure rise rate of the OP Engine. These advantages further solidify the performance benefits of the OP Engine and demonstrate the near-term feasibility of advanced combustion technologies, enabled by the opposed-piston architecture. This paper presents initial results from a steady state testing on a brand new 2.7L OP GCI multi-cylinder engine. A part of the recipe for successful GCI operation calls for high compression ratio, leading to higher combustion stability at low-loads, higher efficiencies, and lower cycle HC+NOx emissions. In addition, initial results on catalyst light-off mode with GCI are also presented. The OP Engine’s architectural advantages enable faster and earlier catalyst light-off while producing low emissions, which further improves cycle emissions and fuel consumption over conventional engines.


Author(s):  
David T. Klos ◽  
Sage L. Kokjohn

This paper uses detailed computational fluid dynamics (CFD) modeling with the kiva-chemkin code to investigate the influence of injection timing, combustion phasing, and operating conditions on combustion instability. Using detailed CFD simulations, a large design of experiments (DOE) is performed with small perturbations in the intake and fueling conditions. A response surface model (RSM) is then fit to the DOE results to predict cycle-to-cycle combustion instability. Injection timing had significant tradeoffs between engine efficiency, emissions, and combustion instability. Near top dead center (TDC) injection timing can significantly reduce combustion instability, but the emissions and efficiency drop close to conventional diesel combustion levels. The fuel split between the two direct injection (DI) injections has very little effect on combustion instability. Increasing exhaust gas recirculation (EGR) rate, while making adjustments to maintain combustion phasing, can significantly reduce peak pressure rise rate (PPRR) variation until the engine is on the verge of misfiring. Combustion phasing has a very large impact on combustion instability. More advanced phasing is much more stable, but produces high PPRRs, higher NOx levels, and can be less efficient due to increased heat transfer losses. The results of this study identify operating parameters that can significantly improve the combustion stability of dual-fuel reactivity-controlled compression ignition (RCCI) engines.


Author(s):  
Laura Manofsky Olesky ◽  
Jiri Vavra ◽  
Dennis Assanis ◽  
Aristotelis Babajimopoulos

Homogeneous charge compression ignition (HCCI) has the potential to reduce both fuel consumption and NOx emissons compared to normal spark-ignited (SI) combustion. For a relatively low compression ratio engine, high unburned temperatures are needed to initiate HCCI combustion, which is achieved with large amounts of internal residual or by heating the intake charge. The amount of residual in the combustion chamber is controlled by a recompression valve strategy, which relies on negative valve overlap (NVO) to trap residual gases in the cylinder. A single-cylinder research engine with fully-flexible valve actuation is used to explore the limits of HCCI combustion phasing at a constant load of ∼3 bar IMEPg. This is done by performing two individual sweeps of a) internal residual fraction (via NVO) and b) intake air temperature to control combustion phasing. It is found that increasing both variables advances the phasing of HCCI combustion, which leads to increased NOx emissions and a higher ringing intensity. On the other hand, a reduction in these variables leads to greater emissions of CO and HC, as well as a decrease in combustion stability. A direct comparison of the two sweeps suggests that the points with elevated intake temperatures are more prone to ringing as combustion is advanced and less prone to instability and misfire as combustion is retarded. This behavior can be explained by compositional differences (air vs. EGR dilution) which lead to variations in burn rate and peak temperature. As a final study, two additional NVO sweeps are performed while holding intake temperature constant at 30°C and 90°C. Again, it is seen that at higher intake temperatures, combustion is more susceptible to ringing at advanced timings and more resistant to instability/misfire at retarded timings.


Author(s):  
Usman Asad ◽  
Ming Zheng ◽  
David Ting ◽  
Jimi Tjong

Homogenous charge compression ignition (HCCI) combustion in diesel engines can provide for cleaner operation with ultra-low NOx and soot emissions. While HCCI combustion has generated significant attention in the last decade, however, to date, it has seen very limited application in production diesel engines. HCCI combustion is typically characterized by earlier than top-dead-center (pre-TDC) phasing, very high pressure rise rates, short combustion durations and minimal control over the timing of the combustion event. To offset the high reactivity of the diesel fuel, large amounts of EGR (30 to 60%) are usually applied to postpone the initiation of combustion, shift the combustion towards TDC and alleviate to some extent, the high pressure rise rates and the reduced energy efficiency. In this work, a detailed analysis of HCCI combustion has been carried out on a high-compression ratio, single-cylinder diesel engine. The effects of intake boost, EGR quantity/temperature, engine speed, injection scheduling and injection pressure on the operability limits have been empirically determined and correlated with the combustion stability, emissions and performance metrics. The empirical investigation is extended to assess the suitability of common alternate fuels (n-butanol, gasoline and ethanol) for HCCI combustion. On the basis of the analysis, the significant challenges affecting the real-world application of HCCI are identified, their effects on the engine performance quantified and possible solutions to overcome these challenges explored through both theoretical and empirical investigations. This paper intends to provide a comprehensive summary of the implementation issues affecting HCCI combustion in diesel engines.


Author(s):  
Usman Asad ◽  
Ming Zheng ◽  
David S.-K. Ting ◽  
Jimi Tjong

Homogeneous charge compression ignition (HCCI) combustion in diesel engines can provide cleaner operation with ultralow NOx and soot emissions. While HCCI combustion has generated significant attention in the last decade, however, till date, it has seen very limited application in production diesel engines. HCCI combustion is typically characterized by earlier than top-dead-center (pre-TDC) phasing, very high-pressure rise rates, short combustion durations, and minimal control over the timing of the combustion event. To offset the high reactivity of the diesel fuel, large amounts of exhaust gas recirculation (EGR) (30–60%) are usually applied to postpone the initiation of combustion, shift the combustion toward TDC, and alleviate to some extent, the high-pressure rise rates and the reduced energy efficiency. In this work, a detailed analysis of HCCI combustion has been carried out on a high-compression ratio (CR), single-cylinder diesel engine. The effects of intake boost, EGR quantity/temperature, engine speed, injection scheduling, and injection pressure on the operability limits have been empirically determined and correlated with the combustion stability, emissions, and performance metrics. The empirical investigation is extended to assess the suitability of common alternate fuels (n-butanol, gasoline, and ethanol) for HCCI combustion. On the basis of the analysis, the significant challenges affecting the real-world application of HCCI are identified, their effects on the engine performance quantified, and possible solutions to overcome these challenges explored through both theoretical and empirical investigations. This paper intends to provide a comprehensive summary of the implementation issues affecting HCCI combustion in diesel engines.


2016 ◽  
Vol 18 (8) ◽  
pp. 847-857 ◽  
Author(s):  
Mayura H Halbe ◽  
David J Fain ◽  
Gregory M Shaver ◽  
Lyle Kocher ◽  
David Koeberlein

Premixed charge compression ignition (PCCI) is a promising combustion strategy for reducing in-cylinder NOx and particulate matter formation in diesel engines without incurring fuel penalty. However, one of the challenges in PCCI implementation is that the process does not allow direct control of the combustion timing. The crank angle of 50% heat release, known as the CA50, is generally a reasonable proxy for the quality of combustion in terms of maximum pressure rise rate, combustion noise, and fuel conversion efficiency. This paper outlines the development, and validation, of a real-time capable estimation strategy for diesel-fueled PCCI CA50 using production-viable measurements that do not include in-cylinder pressure. The CA50 estimation strategy considers both stages of diesel-fueled PCCI combustion—low-temperature heat release and high-temperature heat release, which contributes most to the cumulative heat released during combustion. The strategy is validated using a PCCI CA50 dataset generated with a wide range of positions of a variable geometry turbocharge, exhaust gas recirculation fractions, and intake valve closing timings. The model estimates CA50 within ±2 CAD for 65 out of 80 data points and exhibits an error standard deviation of 2.55 CAD.


2021 ◽  
pp. 146808742110136
Author(s):  
Huiquan Duan ◽  
Ming Jia ◽  
Jinpeng Bai ◽  
Yaopeng Li

To improve the trade-off between thermal efficiency and peak heat release rate (HRR) of partially premixed combustion (PPC) and the combustion efficiency of reactivity-controlled compression ignition (RCCI), the combustion mode with premixed high-reactivity fuel and direct-injection (DI) low-reactivity fuel, called RCCI with reverse reactivity stratification (R-RCCI), was explored at low loads in a light-duty diesel engine in this study. Compared with diesel, polyoxymethylene dimethyl ethers (PODEn) has better volatility, which is beneficial for the formation of premixed charge, so it was used as the premixed high-reactivity fuel for R-RCCI in this work. The gasoline and P20G80 (PODEn/gasoline blends with the volume fraction of 20%/80%) were respectively applied as the DI low-reactivity fuel. By investigating the combustion characteristics of R-RCCI, it is found that R-RCCI can break the trade-off between combustion efficiency and nitrogen oxides (NOx) emissions. This is because the combustion efficiency of R-RCCI is dominated by the spray location of the DI fuel rather than the 50% burn point (CA50). As the start of injection (SOI) timing is retarded, the fuel injected within the piston bowl increases, and combustion efficiency, as well as indicated thermal efficiency (ITE), is considerably promoted. Meanwhile, CA50 progressively retards with delayed SOI timing, which effectively reduces NOx emissions. The soot emissions of R-RCCI are also extremely low. The maximum ITE of PODEn/P20G80 R-RCCI is significantly higher than that of PODEn/gasoline R-RCCI. This occurs because the higher reactivity of P20G80 can reduce the sensitivity of CA50 to SOI timing and improve combustion stability, so a more delayed SOI timing is allowed to improve ITE. With the same engine configurations, R-RCCI can reduce peak pressure rise rate and improve combustion stability, while enhancing combustion efficiency and ITE compared with RCCI at the low-load conditions tested in this study.


Author(s):  
Scott J. Curran ◽  
Kukwon Cho ◽  
Thomas E. Briggs ◽  
Robert M. Wagner

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency (BTE) as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent of premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and cylinder pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to enable RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing, and cylinder pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. BTE was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.


Author(s):  
Scott J. Curran ◽  
James P. Szybist ◽  
Robert M. Wagner

Advanced combustion techniques have shown promise for achieving high thermal efficiency with simultaneous reductions in oxides of nitrogen (NOx) and particulate matter (PM) emissions. Many advanced combustion studies have used some form of noise-related metric to constrain engine operation, whether it be cylinder pressure rise rate, combustion noise, or ringing intensity. As the development of advanced combustion techniques progresses towards production-viable concepts, combustion noise is anticipated to be of the upmost concern for consumer acceptability. This study compares the noise metrics of cylinder pressure rise rate with combustion noise as measured by an AVL combustion noise meter over a wide range of engine operation conditions with reactivity controlled compression ignition on a light-duty multi-cylinder diesel engine modified to allow for direct injection of diesel fuel and port fuel injection of gasoline. Key parameters affecting noise metrics are engine load, speed, and the amount of boost. The trade-offs between high efficiency, low NOX emissions, and combustion noise were also explored. Additionally, the combustion noise algorithm integrated into the Drivven combustion analysis toolkit is compared to cylinder pressure rise rate and combustion noise as measured with a combustion noise meter. It is shown that the combustion noise of the multi-cylinder reactivity controlled compression ignition map can approach 100 dB while keeping the maximum pressure rise under 100 kPa/CAD.


2021 ◽  
pp. 1-25
Author(s):  
Ratnak Sok ◽  
Jin Kusaka

Abstract This work analyzed measured data from a single-cylinder engine operated under gasoline direction injection homogenous charge compression ignition (GDI-HCCI) mode. The experiments were conducted at a 0.95 equivalence ratio (φ) under 0.5 MPa indicated mean effective pressure and 1500RPM. A side-mounted injector delivered primary reference fuel (octane number 90) into the combustion chamber during negative valve overlap (NVO). Advanced combustion phase CA50 were observed as a function of the start of injection (SOI) timings. Under φ=0.95, peak NVO in-cylinder pressures were lower than motoring for single and split injections, emphasizing that NVO reactions were endothermic. Zero-dimensional kinetics calculations showed classical reformate species (C3H6, C2H4, CH4) from the NVO rich mixture increased almost linearly due to SOI timings, while H2 and CO were typically low. These kinetically reformed species shortened predicted ignition delays. This work also analyzed the effects of intake pressure and single versus double pulses injections on CA50, burn duration, peak cylinder pressure, combustion noise, thermal efficiency, and emissions. Advanced SOI (single-injection) generated excessive combustion noise metrics over constraint limits, but the double-pulse injection could significantly reduce the metrics (Ringing Intensity ≤ 5 MW/m2, Maximum Pressure Rise Rate = 0.6 MPa/CA) and NOx emission. The engine's net indicated thermal efficiency reached 41% under GDI-HCCI mode against 36% under SI mode for the same operating conditions. Under GDI-HCCI mode and without spark-ignition, late fuel injection in the intake stroke could reduce NOx to a single digit.


Sign in / Sign up

Export Citation Format

Share Document