Thermal Management of Low Profile Applications

Author(s):  
Ed Walsh ◽  
Pat Walsh ◽  
Ronan Grimes ◽  
Vanessa Egan

There is an increasing need for low profile thermal management solutions for applications in the range of five to ten watts targeted at portable electronic devices. This need is emerging due to enhanced power dissipation levels in portable electronics. This work focuses upon the optimization of such a solution within certain constraints of profile and footprint area. A number of fan geometries have been investigated where both the inlet and exit rotor angles are varied relative to the heat conducting fins on a heat sink. The ratio of fan diameter to heat sink fin length was also varied. The objective was to determine the optimal solution from a thermal management perspective within defined constraints. The results show good thermal performance for low profile thermal management solutions, and highlight the need to develop the heat sink and fan as an integrated thermal solution rather than in isolation as is the traditional methodology. It is also found that while increasing pumping power generally improves the thermal performance, only small gains are achieved for relatively large pumping power increases. This is important in optimizing portable systems which are powered by limited battery life.

2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Ed Walsh ◽  
Pat Walsh ◽  
Ronan Grimes ◽  
Vanessa Egan

There is an increasing need for low profile thermal management solutions for applications in the range of 5–10W, targeted at portable electronic devices. This need is emerging due to enhanced power dissipation levels in portable electronics, such as mobile phones, portable gaming machines, and ultraportable personal computers. This work focuses on the optimization of such a solution within the constraints of the profile and footprint area. A number of fan geometries have been investigated where both the inlet and exit rotor angles are varied relative to the heat conducting fins on a heat sink. The ratio of the fan diameter to the heat sink fin length was also varied. The objective was to determine the optimal solution from a thermal management perspective within the defined constraints. The results show a good thermal performance and highlight the need to develop the heat sink and fan as an integrated thermal solution rather than in isolation as is the traditional methodology. An interesting finding is that the heat transfer scales are in line with turbulent rather than laminar correlations despite the low Reynolds number. It is also found that while increasing the pumping power generally improves the thermal performance, only small gains are achieved for relatively large pumping power increases. This is important in optimizing portable systems where reduced power consumption is a competitive advantage in the marketplace.


Author(s):  
Tunc Icoz ◽  
Mehmet Arik ◽  
John T. Dardis

Thermal management of electronics is a critical part of maintaining high efficiency and reliability. Adequate cooling must be balanced with weight and volumetric requirements, especially for passive air-cooling solutions in electronics applications where space and weight are at a premium. It should be noted that there are systems where thermal solution takes more than 95% of the total weight of the system. Therefore, it is necessary to investigate and utilize advanced materials to design low weight and compact systems. Many of the advanced materials have anisotropic thermal properties and their performances depend strongly on taking advantage of superior properties in the desired directions. Therefore, control of thermal conductivity plays an important role in utilization of such materials for cooling applications. Because of the complexity introduced by anisotropic properties, thermal performances of advanced materials are yet to be fully understood. Present study is an experimental and computational study on characterization of thermal performances of advanced materials for heat sink applications. Numerical simulations and experiments are performed to characterize thermal performances of four different materials. An estimated weight savings in excess of 75% with lightweight materials are observed compared to the traditionally used heat sinks.


Author(s):  
Damena Agonafer ◽  
Juan Ibarra ◽  
Kendrick McGee ◽  
Frank Platt ◽  
Kendall Harris ◽  
...  

The Heat Pipe Assisted Heat Sink (HPAHS) team will be working on solving challenging thermal management problems for a device known as the base transceiver station (BTS); a device used to transfer cell phone calls. This problem was raised due to transfer cell phone calls. This problem was raised due to the high use of cell phone in recent years. According to 2002 Scarborough Research, the number of cell phones in US was 180 million (2/3 of population). Due to this high increase in demand for cell phone usage, Replacement Handset Shipments are projected to increase worldwide from Current 40% of total shipments to almost 85%. This will increase from 211 million in 2002 to 591 million by 2008 (Nokia). Cell phone calls are transferred via a device known as the base transceiver station (BTS). Cell phone companies are increasing the performance of the BTS by adding more electronics. Nokia is increasing the current BTS performance by adding another power amplifier. We will encounter the problem of designing the thermal solution to ensure optimal thermal performance, while meeting customer requirements of cost and manufacturing process.


Author(s):  
Afzal Husain ◽  
Mohd Ariz ◽  
Nasser A. Al-Azri ◽  
Nabeel Z. H. Al-Rawahi ◽  
Mohd. Z. Ansari

The increase in the CPV temperature significantly reduces the efficiency of CPV system. To maintain the CPV temperature under a permissible limit and to utilize the unused heat from the CPVs, an efficient cooling and transportation of coolant is necessary in the system. The present study proposes a new design of hybrid jet impingements/microchannels heat sink with pillars for cooling densely packed PV cells under high concentration. A three-dimensional numerical model was constructed to investigate the thermal performance under steady state, incompressible and laminar flow. A constant heat flux was applied at the base of the substrate to imitate heated CPV surface. The effect of two dimensionless variables, i.e., ratios of standoff (distance from the nozzle exit to impingement surface) to jet diameter and jet pitch to jet diameter was investigated at several flow conditions. The performance of hybrid heat sink was investigated in terms of heat transfer coefficient, pressure-drop, overall thermal resistance and pumping power. The characteristic relationship between the overall thermal resistance and the pumping power was presented which showed an optimum design corresponding to S/Dj = 12 having lower overall thermal resistance and lower pumping power.


Author(s):  
Ed Walsh ◽  
Ronan Grimes

The increasing heat flux densities from portable electronics are leading to new methodologies being implemented to provide thermal management within such devices. Many technologies are under development to transport heat within electronic equipment to allow it to be transported into the surroundings via conduction, natural convection and radiation. Few have considered the approach of implementing a forced convection cooling solution in such devices. This work addresses the potential of a low profile integrated fan and heat sink solution to electronics thermal management issues of the future, particularly focusing upon possible solutions in low profile portable electronics. We investigate two heat sink designs with mini channel features, applicable to low profile applications. The thermal performance of the heat sinks is seen to differ by approximately 40% and highlights the importance of efficient heat sink design at this scale.


Author(s):  
Venugopal Gandikota ◽  
Harish Chengalvala ◽  
Amy S. Fleischer ◽  
G. F. Jones

The on-going trend towards increasing device performance while shrinking device size often results in escalating power densities and high operating temperatures. High operating temperatures may lead to reduced reliability and induced thermal stresses. Therefore, it is necessary to employ new and innovative thermal management techniques to maintain a suitable junction temperature at high power densities. For this reason, there is interest in a variety of liquid cooling techniques. This study analyzes a composite material heat sink. The heat sink consists of a very large number of small cross-section fins fabricated from carbon pitch fibers and epoxy. These carbon pitch fibers have a high thermal conductivity along the length of the fin. It is expected that the longer length will result in more heat transfer surface area and a more effective heat sink. This experimental study characterizes the thermal performance of the carbon-fiber heat sink in a two-phase closed loop thermosyphon using FC-72 as the operating fluid. The influence of heat load, thermosyphon fill volume, and condenser operating temperature on the overall thermal performance is examined. The results of this experiment provide significant insight into the possible implementation and benefits of carbon fiber heat sink technology in two-phase flow leading to significant improvements in thermal management strategies for advanced electronics. The carbon fiber heat sink yielded heat transfer coefficients in the range of 1300-1500 W/m2 K for heat fluxes in the range up to 3.2 W/cm2. Resistances in the range of 0.20 K/W – 0.23 K/W were achieved for the same heat fluxes. Condenser temperature and fill ratio did not show a significant effect on any of the results.


Author(s):  
T. J. John ◽  
B. Mathew ◽  
H. Hegab

In this paper the authors are studying the effect of introducing S-shaped pin-fin structures in a micro pin-fin heat sink to enhance the overall thermal performance of the heat sinks. For the purpose of evaluating the overall thermal performance of the heat sink a figure of merit (FOM) term comprising both thermal resistance and pumping power is introduced in this paper. An optimization study of the overall performance based on the pitch distance of the pin-fin structures both in the axial and the transverse direction, and based on the curvature at the ends of S-shape fins is also carried out in this paper. The value of the Reynolds number of liquid flow at the entrance of the heat sink is kept constant for the optimization purpose and the study is carried out over a range of Reynolds number from 50 to 500. All the optimization processes are carried out using computational fluid dynamics software CoventorWARE™. The models generated for the study consists of two sections, the substrate (silicon) and the fluid (water at 278K). The pin fins are 150 micrometers tall and the total structure is 500 micrometer thick and a uniform heat flux of 500KW is applied to the base of the model. The non dimensional thermal resistance and nondimensional pumping power calculated from the results is used in determining the FOM term. The study proved the superiority of the S-shaped pin-fin heat sinks over the conventional pin-fin heat sinks in terms of both FOM and flow distribution. S-shaped pin-fins with pointed tips provided the best performance compared to pin-fins with straight and circular tips.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4658
Author(s):  
Jiefeng Liu ◽  
Shangxin Yu ◽  
Shichang Yang ◽  
Yiyi Zhang ◽  
Xianhao Fan ◽  
...  

Operating temperature is an important parameter of thyristors to ensure the stable operation of power electronic devices. Thermal management technology is of great significance for improving the reliability of thyristors. In this study, the performance of a phase change material (PCM) mesh-finned heat sink is investigated for the thermal management of thyristors. A multi-physical coupling model of the PCM mesh-finned heat sink is established to analyze the effects of different power losses, air velocities, heights of fins, and thickness of PCM on the thermal performance of the PCM heat sink. The influence of thermal and flow fields on PCM is considered in this model. Furthermore, the heat sink design is optimized to improve the thermal performance based on the calculation results of thermal network parameters. The results show that the power losses, the air velocity, the height of fins, and the thickness of PCM significantly affect the protection ability of the PCM heat sink. After optimizing the heat sink, the PCM heat sink provides 80 s protection time and 100 s recovery time. The PCM mesh-finned heat sink demonstrated good potential for the thermal management of thyristors.


Sign in / Sign up

Export Citation Format

Share Document