Thermal Performance of PCM-based Heat Sink with Partially Filled Copper Oxide Coated Metal-foam for Thermal Management of Microelectronics

Author(s):  
Adeel Arshad ◽  
Mark Jabbal ◽  
Yuying Yan
2021 ◽  
Vol 163 ◽  
pp. 106796
Author(s):  
Yongtong Li ◽  
Liang Gong ◽  
Bin Ding ◽  
Minghai Xu ◽  
Yogendra Joshi

2022 ◽  
Vol 48 ◽  
pp. 103882
Author(s):  
Adeel Arshad ◽  
Mark Jabbal ◽  
Hamza Faraji ◽  
Pouyan Talebizadehsardari ◽  
Muhammad Anser Bashir ◽  
...  

Author(s):  
Ed Walsh ◽  
Pat Walsh ◽  
Ronan Grimes ◽  
Vanessa Egan

There is an increasing need for low profile thermal management solutions for applications in the range of five to ten watts targeted at portable electronic devices. This need is emerging due to enhanced power dissipation levels in portable electronics. This work focuses upon the optimization of such a solution within certain constraints of profile and footprint area. A number of fan geometries have been investigated where both the inlet and exit rotor angles are varied relative to the heat conducting fins on a heat sink. The ratio of fan diameter to heat sink fin length was also varied. The objective was to determine the optimal solution from a thermal management perspective within defined constraints. The results show good thermal performance for low profile thermal management solutions, and highlight the need to develop the heat sink and fan as an integrated thermal solution rather than in isolation as is the traditional methodology. It is also found that while increasing pumping power generally improves the thermal performance, only small gains are achieved for relatively large pumping power increases. This is important in optimizing portable systems which are powered by limited battery life.


Author(s):  
Venugopal Gandikota ◽  
Harish Chengalvala ◽  
Amy S. Fleischer ◽  
G. F. Jones

The on-going trend towards increasing device performance while shrinking device size often results in escalating power densities and high operating temperatures. High operating temperatures may lead to reduced reliability and induced thermal stresses. Therefore, it is necessary to employ new and innovative thermal management techniques to maintain a suitable junction temperature at high power densities. For this reason, there is interest in a variety of liquid cooling techniques. This study analyzes a composite material heat sink. The heat sink consists of a very large number of small cross-section fins fabricated from carbon pitch fibers and epoxy. These carbon pitch fibers have a high thermal conductivity along the length of the fin. It is expected that the longer length will result in more heat transfer surface area and a more effective heat sink. This experimental study characterizes the thermal performance of the carbon-fiber heat sink in a two-phase closed loop thermosyphon using FC-72 as the operating fluid. The influence of heat load, thermosyphon fill volume, and condenser operating temperature on the overall thermal performance is examined. The results of this experiment provide significant insight into the possible implementation and benefits of carbon fiber heat sink technology in two-phase flow leading to significant improvements in thermal management strategies for advanced electronics. The carbon fiber heat sink yielded heat transfer coefficients in the range of 1300-1500 W/m2 K for heat fluxes in the range up to 3.2 W/cm2. Resistances in the range of 0.20 K/W – 0.23 K/W were achieved for the same heat fluxes. Condenser temperature and fill ratio did not show a significant effect on any of the results.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4658
Author(s):  
Jiefeng Liu ◽  
Shangxin Yu ◽  
Shichang Yang ◽  
Yiyi Zhang ◽  
Xianhao Fan ◽  
...  

Operating temperature is an important parameter of thyristors to ensure the stable operation of power electronic devices. Thermal management technology is of great significance for improving the reliability of thyristors. In this study, the performance of a phase change material (PCM) mesh-finned heat sink is investigated for the thermal management of thyristors. A multi-physical coupling model of the PCM mesh-finned heat sink is established to analyze the effects of different power losses, air velocities, heights of fins, and thickness of PCM on the thermal performance of the PCM heat sink. The influence of thermal and flow fields on PCM is considered in this model. Furthermore, the heat sink design is optimized to improve the thermal performance based on the calculation results of thermal network parameters. The results show that the power losses, the air velocity, the height of fins, and the thickness of PCM significantly affect the protection ability of the PCM heat sink. After optimizing the heat sink, the PCM heat sink provides 80 s protection time and 100 s recovery time. The PCM mesh-finned heat sink demonstrated good potential for the thermal management of thyristors.


Author(s):  
Han Shen ◽  
Xueting Liu ◽  
Hongbin Yan ◽  
Gongnan Xie ◽  
Bengt Sunden

Internal Y-shaped bifurcation has been proved to be an advantageous way on improving thermal performance of microchannel heat sinks according to the previous research. Metal foams are known due to their predominate performance such as low-density, large surface area, and high thermal conductivity. In this paper, different parameters of metal foams in Y-shaped bifurcation microchannel heat sinks are designed and investigated numerically. The effects of Reynolds number, porosity of metal foam, and the pore density (PPI) of the metal foam on the microchannel heat sinks are analyzed in detail. It is found that the internal Y-shaped bifurcation microchannel heat sinks with metal foam exhibit better heat transfer enhancement and overall thermal performance. This research provides broad application prospects for heat sinks with metal foam in the thermal management of high power density electronic devices.


Sign in / Sign up

Export Citation Format

Share Document