Characterization of Micro Fluidic Devices by Optical Measurements

Author(s):  
Michael Schlu¨ter ◽  
Marko Hoffmann ◽  
Norbert Ra¨biger

Micro fluidic devices are successfully in use for several applications in chemical engineering and biotechnology. Nevertheless, there is still no breakthrough for micro process engineering because of a lack in understanding the mechanisms for local hydrodynamics and mass transfer on micro scales. Micro Particle Image Velocimetry (μ-PIV) combined with Confocal Laser Scanning Microscopy (CLSM) enables the measurement of three-dimensional flow and concentration fields in micro devices for common stationary cases. By quantitative analysis of pressure drops, mixing qualities and residence time distributions an adjustment of micro reactor devices for the demands of chemical and biochemical reactions becomes possible.

Author(s):  
Jagannath Upadhyay ◽  
Daniel S. Park ◽  
Karsten E. Thompson ◽  
Dimitris E. Nikitopoulos

A confocal Micro-Particle Image Velocimetry (C-μPIV) technique along with associated post image processing algorithms is established to quantify three dimensional distributions of nano-particle velocity and concentration at the micro-scale (pore-scale) in 2.5D porous media designed from a Boise rock sample. In addition, an in-situ, non-destructive method for measuring the geometry of the micro-model, including its depth, is described and demonstrated. The particle experiments use 900 nm fluorescence labeled polystyrene particles at a flow rate of 10 nLmin−1 and confocal laser scanning microscopy (CLSM), while in-situ geometry measurements use regular microscope along with Rhodamine dye and a depth-to-fluorescence-intensity calibration. Image post-processing techniques include elimination of background noise and signal from adsorbed nano-particle on the inner surfaces of the micro-model. In addition, a minimization of depth of focus technique demonstrates a capability of optically thin slice allowing us to measure depth wise velocity in 2.5D micro-model. The mean planar components of the particle velocity of the steady-state flow and particle concentration distributions were measured in three dimensions. Particle velocities range from 0.01 to 122 μm s−1 and concentrations from 2.18 × 103 to 1.79 × 104 particles mm−2. Depth-wise results show that mean velocity closer to the top wall is comparatively higher than bottom walls, because of higher planar porosity and smooth pathway for the nano-particles closer to the top wall. The three dimensional micro-model geometry reconstructed from the fluorescence data can be used to conduct numerical simulations of the flow in the as-tested micro-model for future comparisons to experimental results after incorporating particle transport and particle-wall interaction models.


1991 ◽  
Vol 98 (1) ◽  
pp. 99-105
Author(s):  
D. Hernandez-Verdun ◽  
M. Robert-Nicoud ◽  
G. Geraud ◽  
C. Masson

The behaviour of nucleolar proteins in cycling PtK1 cells and in micronuclei with or without NORs was investigated by immunofluorescence using antibodies from autoimmune sera and confocal laser scanning microscopy. These antibodies were shown by electron microscopy to recognize antigens confined to only one of the three basic nucleolar components: fibrillar centres (FC), dense fibrillar component (DFC) and granular component (GC). Serial optical sections allowed us to determine the three-dimensional organization of these components in the nucleolus of cycling cells. Furthermore, clear differences were found in the distribution of the various antigens in micronucleated cells. Three patterns could be observed: (1) the FC antigens were found mainly in the nucleoli, but also in varying amounts in the dots; (2) surprisingly, the DFC antigens were found to accumulate preferentially in the dots; (3) the GC-specific marker stained intensively the nucleoli as well the dots. The results are interpreted with regard to possible mechanisms for targeting nucleolar proteins to the site of nucleolar formation.


2019 ◽  
Vol 5 (12) ◽  
pp. 88
Author(s):  
Kazuo Katoh

As conventional fluorescence microscopy and confocal laser scanning microscopy generally produce images with blurring at the upper and lower planes along the z-axis due to non-focal plane image information, the observation of biological images requires “deconvolution.” Therefore, a microscope system’s individual blur function (point spread function) is determined theoretically or by actual measurement of microbeads and processed mathematically to reduce noise and eliminate blurring as much as possible. Here the author describes the use of open-source software and open hardware design to build a deconvolution microscope at low cost, using readily available software and hardware. The advantage of this method is its cost-effectiveness and ability to construct a microscope system using commercially available optical components and open-source software. Although this system does not utilize expensive equipment, such as confocal and total internal reflection fluorescence microscopes, decent images can be obtained even without previous experience in electronics and optics.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Rachele Tofanelli ◽  
Athul Vijayan ◽  
Sebastian Scholz ◽  
Kay Schneitz

Abstract Background A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species Arabidopsis thaliana have long been established as a model system for the study of organogenesis in plants. While ovule development in Arabidopsis can be followed by a variety of different imaging techniques, no experimental strategy presently exists that enables an easy and straightforward investigation of the morphology of internal tissues of the ovule with cellular resolution. Results We developed a protocol for rapid and robust confocal microscopy of fixed Arabidopsis ovules of all stages. The method combines clearing of fixed ovules in ClearSee solution with marking the cell outline using the cell wall stain SCRI Renaissance 2200 and the nuclei with the stain TO-PRO-3 iodide. We further improved the microscopy by employing a homogenous immersion system aimed at minimizing refractive index differences. The method allows complete inspection of the cellular architecture even deep within the ovule. Using the new protocol we were able to generate digital three-dimensional models of ovules of various stages. Conclusions The protocol enables the quick and reproducible imaging of fixed Arabidopsis ovules of all developmental stages. From the imaging data three-dimensional digital ovule models with cellular resolution can be rapidly generated using image analysis software, for example MorphographX. Such digital models will provide the foundation for a future quantitative analysis of ovule morphogenesis in a model species.


2020 ◽  
Vol 119 (12) ◽  
pp. 4159-4168
Author(s):  
Runhui Zhang ◽  
Wanpeng Zheng ◽  
Arwid Daugschies ◽  
Berit Bangoura

AbstractMixed infections of Toxoplasma gondii and Eimeria tenella are likely to occur frequently due to the high prevalence of both pathogens in free-ranging chickens. In this study, we investigated the co-occurrence of the two parasites in the same immune-competent host cell towards altered patterns of parasite-host interactions. Chicken blood monocyte–derived macrophages were co-infected with T. gondii RH tachyzoites and E. tenella Houghton sporozoites in vitro for 24 h. Through monitoring the uptake of pH-sensitive pHrodo™ Zymosan BioParticles (“Zymosan”) by macrophages, we created a three-dimensional model and to analyze quantitatively phagocytosis using confocal laser scanning microscopy. Assessments of parasite populations were performed by qPCR at 2, 6, 12, and 24 h post-infection (hpi). At 6 hpi, phagocytosis was inhibited in the E. tenella–infected cultures while no inhibition of phagocytosis was observed due to T. gondii. Phagocytosis activity revealed more complex interactions during co-infection. At 12 and 24 hpi, phagocytosis response to “Zymosan” was distinctly weaker in co-infected cells than in all other groups except for cells mono-infected with high doses of E. tenella at 24 hpi. By qPCR, significantly reduced numbers of both intracellular parasites were recorded (10-fold) in all infected groups at 2 hpi. At 12 hpi, the T. gondii population reached lowest values but dramatically increased by 24 hpi. Our data confirm that macrophage phagocytosis is involved in the control of invasion by apicomplexan parasites in chicken which particularly applies to E. tenella infection and it was able to be altered by the co-existing parasites.


2006 ◽  
Vol 72 (4) ◽  
pp. 2864-2875 ◽  
Author(s):  
Cordula Lembke ◽  
Andreas Podbielski ◽  
Carlos Hidalgo-Grass ◽  
Ludwig Jonas ◽  
Emanuel Hanski ◽  
...  

ABSTRACT Streptococcus pyogenes (group A streptococcus [GAS]) is a frequent cause of purulent infections in humans. As potentially important aspects of its pathogenicity, GAS was recently shown to aggregate, form intratissue microcolonies, and potentially participate in multispecies biofilms. In this study, we show that GAS in fact forms monospecies biofilms in vitro, and we analyze the basic parameters of S. pyogenes in vitro biofilm formation, using Streptococcus epidermidis as a biofilm-positive control. Of nine clinically important serotype strains, M2, M6, M14, and M18 were found to significantly adhere to coated and uncoated polystyrene surfaces. Fibronectin and collagen types I and IV best supported primary adherence of serotype M2 and M18 strains, respectively, whereas serotype M6 and M14 strains strongly bound to uncoated polystyrene surfaces. Absorption measurements of safranin staining, as well as electron scanning and confocal laser scanning microscopy, documented that primary adherence led to subsequent formation of three-dimensional biofilm structures consisting of up to 46 bacterial layers. Of note, GAS isolates belonging to the same serotype were found to be very heterogeneous in their biofilm-forming behavior. Biofilm formation was equally efficient under static and continuous flow conditions and consisted of the classical three steps, including partial disintegration after long-term incubation. Activity of the SilC signaling peptide as a component of a putative quorum-sensing system was found to influence the biofilm structure and density of serotype M14 and M18 strains. Based on the presented methods and results, standardized analyses of GAS biofilms and their impact on GAS pathogenicity are now feasible.


Sign in / Sign up

Export Citation Format

Share Document