Heat Transfer Characteristics of Downward Supercritical Kerosene Flow in Minitubes

Author(s):  
Jinpin Lin ◽  
Jingzhi Zhang ◽  
Ekaterina Sokolova ◽  
Wei Li

The heat transfer characteristics of supercritical China RP-3 aviation kerosene flowing downward in a vertical circular tube are numerically investigated. A ten-species surrogate model is used to calculate the thermophysical properties of kerosene and the Re-Normalization Group (RNG) k-ε model with the enhanced wall treatment is adopted to simulate the turbulent flow. The effects of diameter, wall heat flux, and pressure on temperature and heat transfer coefficient are studied. The numerical results show three types of heat transfer deterioration exist along the flow direction. The first deterioration at the tube inlet region is caused by the development of the thermal boundary layer, which exist whatever the operation condition is. The second and third kind of deterioration take place when the inner wall temperature or the bulk fuel temperature approaches the pseudo-critical temperature under a pressure close to the critical value. The heat transfer coefficients increase with decreasing diameter and increasing pressure. The increase of inlet pressure can effectively eliminate the deteriorations because the thermophysical properties change less near the critical point at higher pressure. The decrease of wall heat flux will delay the onsets of the second and third kind of deterioration. The numerical heat transfer coefficient fit well with the empirical correlations.

2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


Author(s):  
Azad Qazi Zade ◽  
Metin Renksizbulut ◽  
Jacob Friedman

The effects of variable physical properties on the flow and heat transfer characteristics of simultaneously developing slip-flow in rectangular microchannels with constant wall heat flux are numerically investigated. A co-located finite-volume method is used in order to solve the mass, momentum and energy equations in their most general form. Thermophysical properties of the flowing gas are functions of temperature, while density and Knudsen number are allowed to change with both pressure and temperature. Different Knudsen numbers are considered in order to study the effects of slip-flow. Simulations indicate that the constant physical property assumption can result in under/over-prediction of the local friction and heat transfer coefficients depending on the problem configuration. Density and thermophysical property variations have significant effects on predicting flow and heat transfer characteristics since the gas temperature constantly changes as a result of the applied wall heat flux. Heat transfer coefficient is affected both due to the change in the velocity field and change in thermophysical properties. Also temperature dependence of the local Knudsen number can significantly alter the friction coefficients due to its strong dependence on slip conditions. The degree of discrepancy varies for different cases depending on the Knudsen number, and the applied heat flux strength and direction (cooling versus heating).


Author(s):  
P. Razi ◽  
M. A. Akhavan-Behabadi

An experimental investigation has been carried out to study the heat transfer characteristics of CuO-Base oil nanofluid flow inside horizontal flattened tubes under constant heat flux. The nanofluid flowing inside the tube is heated by an electrical heating coil wrapped around it. The convective heat transfer coefficients of nanofluids are obtained for laminar fully developed flow inside round and flattened tubes. The effect of different parameters such as Reynolds number, flattened tube internal height, nanoparticles concentration and heat flux on heat transfer coefficient is studied. Observations show that the heat transfer performance is improved as the tube profile is flattened. The heat transfer coefficient is increased by using nanofluid instead of base fluid. Also, it can be concluded that decreasing the internal height of the flattened tubes and increasing the concentration of nanoparticles both contribute to the enhancement of heat transfer coefficient.


Author(s):  
Qiang Wang ◽  
Puzhen Gao ◽  
Xianbing Chen ◽  
Zhongyi Wang ◽  
Ying Huang

Natural circulation served as an indispensable part of nuclear, attracted much more attentions in recent years. It does not need a pump to provide power. The operating principle of natural circulation caused its complexity in analysis process. It was still a difficult issue to reveal the law of natural circulation accurately. Many experiments and calculations had to be conducted to study the basic physical regulation. This paper concentrated upon the heat transfer characteristics in the test section with two different types of heat flux distribution. The two types of heating flux distribution in the test section were linear and chopped cosine along axial direction. Based on a natural circulation experimental facility, physical models and mathematic models were established. RELAP5 code was used to calculate the thermal hydraulic state of natural circulation loop. The variation of heat transfer coefficient along flow direction was different. It was tightly related to heat flux. Some relevant experiments were conducted in many different conditions and steady sate experimental data were achieved to verified theoretical calculations. Experimental data, such as water temperature, wall temperature and flow rate were recorded when the system is stable. The heat transfer coefficients were calculated according to the experimental data. The factors that affected the heat transfer characteristics of natural circulation were analyzed by comparing the heat transfer coefficient under different conditions. The heat transfer coefficient was calculated according to the empirical correlations as well. After a series of analysis, the results indicated heat transfer coefficient had an obvious difference, which influenced ability of natural circulation. Comparing with experimental data, the evaluation of different empirical correlations was conducted in two test sections. Some empirical correlations turned out to be suitable for the estimation of heat transfer in experiment facility. The increase of heat flux could enhance heat transfer process in the two test section under low pressure. Average heat transfer coefficient increased with the decrease of inlet subcooling degree. The system pressure effected the heat transfer characteristics of natural circulation as well. The increase of mass flux would promote heat transfer while the level was different. RELAP5 had a great agreement with experimental data in single phase flow. Natural circulation ability was influenced by the position of average heat source center, which was slightly different in the research objects. The research would lend strong empirical support to the guideline of experiment and subsequence study in natural circulation.


Author(s):  
Adnan Alashkar ◽  
Mohamed Gadalla

In this present paper, nanoparticles are dispersed into a base fluid, their effect on the thermophysical properties and overall heat transfer coefficient of the fluid inside a circular tube representing an absorber tube of a Parabolic Trough Solar Collector (PTSC) is studied. Different models are used to predict the effective density, specific heat capacity, viscosity and thermal conductivity of the nanofluids. For the analytical analysis, Alumina (Al2O3), Copper (Cu) and Single Wall Carbon Nanotubes (SWCNT) nanoparticles are dispersed into Therminol VP-1 oil. The resulting nanofluids are compared in terms of their thermophysical properties, their convective heat transfer characteristics and their overall heat transfer coefficient. Moreover, the effect on increasing the volume fraction on the properties and the heat transfer coefficient is studied. The computational analysis results show that the thermal conductivity increases with the increase of the volume fraction. In addition Therminol/SWCNT showed the highest thermal conductivity enhancement of 98% for a volume fraction of 3%. Further, the overall heat transfer coefficient increases with the increase of volume fraction, and Therminol/SWCNT showed the highest enhancement with 72% compared to Al2O3/Therminol and Cu/Therminol that showed an enhancement of 29% and 43% respectively.


Author(s):  
M. Fatouh

The present work aimed at determining the condensation heat transfer characteristics of R134a on single horizontal smooth and finned tubes under different parameters. These are saturated temperature (36°C and 43°C), inlet coolant temperature (25°C and 30°C) and coolant mass flow rate (100: 800 kg/h) for smooth and finned tubes. In the case of finned tubes, the pitch to height ratio varies from 0.5 to 3.08. Experimental condensation heat transfer characteristics for R134a and R12 on a smooth tube are compared. Experimental results confirmed that the heat flux and the overall heat transfer coefficient for R134a increase when coolant mass flow rate, saturation temperature and fin height increase or as both coolant inlet temperature and fin height decrease. The influence of fin pitch, on condensation heat flux and overall heat transfer, is lower than that of fin height. However, the heat flux and the overall heat transfer coefficient for R134a are correlated with the investigated parameters. Finally, the comparison between R12 and R134a revealed that the condensation heat transfer characteristics for R134a are better than those of R12.


Author(s):  
Lorenzo Cremaschi

Driven by higher energy efficiency targets and industrial needs of process intensification and miniaturization, nanofluids have been proposed in energy conversion, power generation, chemical, electronic cooling, biological, and environmental systems. In space conditioning and in cooling systems for high power density electronics, vapor compression cycles provide cooling. The working fluid is a refrigerant and oil mixture. A small amount of lubricating oil is needed to lubricate and to seal the sliding parts of the compressors. In heat exchangers the oil in excess penalizes the heat transfer and increases the flow losses: both effects are highly undesired but yet unavoidable. This paper studies the heat transfer characteristics of nanorefrigerants, a new class of nanofluids defined as refrigerant and lubricant mixtures in which nano-size particles are dispersed in the high-viscosity liquid phase. The heat transfer coefficient is strongly governed by the viscous film excess layer that resides at the wall surface. In the state-of-the-art knowledge, while nanoparticles in the refrigerant and lubricant mixtures were recently experimentally studied and yielded convective in-tube flow boiling heat transfer enhancements by as much as 101%, the interactions of nanoparticles with the mixture still pose several open questions. The model developed in this work suggested that the nanoparticles in this excess layer generate a micro-convective mass flux transverse to the flow direction that augments the thermal energy transport within the oil film in addition to the macroscopic heat conduction and fluid convection effects. The nanoparticles motion in the shearing-induced and non-uniform shear rate field is added to the motion of the nanoparticles due to their own Brownian diffusion. The augmentation of the liquid phase thermal conductivity was predicted by the developed model but alone it did not fully explain the intensification on the two-phase flow boiling heat transfer coefficient reported in previous work in the literature. Thus, additional nano- and micro-scale heat transfer intensification mechanisms were proposed.


Author(s):  
S. Kabelac ◽  
K. B. Anoop

Nanofluids are colloidal suspensions with nano-sized particles (<100nm) dispersed in a base fluid. From literature it is seen that these fluids exhibit better heat transfer characteristics. In our present work, thermal conductivity and the forced convective heat transfer coefficient of an alumina-water nanofluid is investigated. Thermal conductivity is measured by a steady state method using a Guarded Hot Plate apparatus customized for liquids. Forced convective heat transfer characteristics are evaluated with help of a test loop under constant heat flux condition. Controlled experiments under turbulent flow regime are carried out using two particle concentrations (0.5vol% and 1vol %). Experimental results show that, thermal conductivity of nanofluids increases with concentration, but the heat transfer coefficient in the turbulent regime does not exhibit any remarkable increase above measurement uncertainty.


2011 ◽  
Vol 354-355 ◽  
pp. 369-375
Author(s):  
Chun Bo Wang ◽  
Xiao Fei Ma ◽  
Jiao Zhang ◽  
Jin Gui Sheng ◽  
Hong Wei Li

A combustion and heat transfer model in oxy-fired CFBB was set. Particle diameter, voidage of the bed ,etc, was analyzed with 30%, 50%, and 70% oxygen. Take a 300MW CFBB for example, the heat transfer characteristics in furnace were numerical simulated. In the sparse zone, heat transfer coefficient is proportional to oxygen concentration at the same voidage of the bed; under the same operation condition, the heat transfer coefficient in CFB increases with the voidage of the bed at first, then it decreases. It was found the heat transfer capability decrease due to the higher concentration of oxygen. It is necessary to set an external heat exchanger to keep a normal combustion


Author(s):  
Majid Bazargan ◽  
Mahdi Mohseni

There are many engineering systems with working fluids which have properties varying significantly with temperature. This causes the effect of the wall heat flux on the velocity and temperature fields to become larger with respect to the constant property flows. In this study the effect of the wall heat flux on the entropy generation in the mixed turbulent convection heat transfer of a fluid flow with high property variations has been investigated. The local and total entropy generation is calculated. In addition, the region in which the entropy production is larger has been determined. Furthermore, the contribution of each of the mechanisms of entropy production which is depended on the wall heat flux is determined. It should be noted that the implementation of different heat fluxes at the tube wall affects all mechanisms of entropy generation. The results show that the bulk entropy generation reaches a minimum value when the heat transfer coefficient has a maximum value. The wall heat flux also has an opposite effect on the heat transfer coefficient and entropy generation which is a favorable result.


Sign in / Sign up

Export Citation Format

Share Document