The PSI Artist Project: Aerosol Retention and Accident Management Issues Following a Steam Generator Tube Rupture

Author(s):  
Salih Gu¨ntay ◽  
Abdel Dehbi ◽  
Detlef Suckow ◽  
Jon Birchley

Steam generator tube rupture (SGTR) incidents, such as those, which occurred in various operating pressurized, water reactors in the past, are serious operational concerns and remain among the most risk-dominant events. Although considerable efforts have been spent to understand tube degradation processes, develop improved modes of operation, and take preventative and corrective measures, SGTR incidents cannot be completely ruled out. Under certain conditions, high releases of radionuclides to the environment are possible during design basis accidents (DBA) and severe accidents. The severe accident codes’ models for aerosol retention in the secondary side of a steam generator (SG) have not been assessed against any experimental data, which means that the uncertainties in the source term following an unisolated SGTR concurrent with a severe accident are not currently quantified. The accident management (AM) procedures aim at avoiding or minimizing the release of fission products from the SG. The enhanced retention of activity within the SG defines the effectiveness of the accident management actions for the specific hardware characteristics and accident conditions of concern. A sound database on aerosol retention due to natural processes in the SG is not available, nor is an assessment of the effect of management actions on these processes. Hence, the effectiveness of the AM in SGTR events is not presently known. To help reduce uncertainties relating to SGTR issues, an experimental project, ARTIST (AeRosol Trapping In a Steam generaTor), has been initiated at the Paul Scherrer Institut to address aerosol and droplet retention in the various parts of the SG. The test section is comprised of a scaled-down tube bundle, a full-size separator and a full-size dryer unit. The project will study phenomena at the separate effect and integral levels and address AM issues in seven distinct phases: Aerosol retention in 1) the broken tube under dry secondary side conditions, 2) the near field close to break under dry conditions, 3) the bundle far-field under dry conditions, 4) the separator and dryer under dry conditions, 5) the bundle section under wet conditions, 6) droplet retention in the separator and dryer sections and 7) the overall SG (integral tests). Prototypical test parameters are selected to cover the range of conditions expected in severe accident as well as DBA scenarios. This paper summarizes the relevant issues and introduces the ARTIST facility and the provisional test program which will run between 2003 and 2007.

Author(s):  
Christopher Boyd ◽  
Kelly Hardesty

Computational Fluid Dynamics (CFD) is applied to steam generator inlet plenum mixing as part of a larger plan covering steam generator tube integrity. The technique is verified by comparing predicted results with severe accident natural circulation data [1] from a 1/7th scale Westinghouse facility. This exercise demonstrates that the technique can predict the natural circulation and mixing phenomena relevant to steam generator tube integrity issues. The model includes primary side flow paths for a single hot leg and steam generator. Qualitatively, the experimentally observed flow phenomena are predicted. The paths of the natural circulation flows and the relative flow proportions are correctly predicted. Quantitatively, comparisons are made with temperatures, mass flows, and other parameters. All predictions are generally within 10% of the experimental values. Overall, there is a high degree of confidence in the CFD technique for prediction of the relevant flow phenomena associated with this type of severe accident sequence.


Author(s):  
S. Gu¨ntay ◽  
D. Suckow ◽  
A. Dehbi ◽  
R. Kapulla

ARTIST (Aerosol Trapping In a Steam Generator) is a seven-phase international project (2003–2007) which investigates aerosol and droplet retention in a model steam generator under dry, wet and accident management conditions, respectively. The test section is comprised of a scaled steam generator tube bundle consisting of 270 tubes and 3 stages, one 1:1 separator unit, and one 1:1 dryer unit. As a prelude to the ARTIST project, four tests are conducted in the ARTIST bundle within the 5th EU FWP SGTR. These first tests address aerosol deposition phenomena on two different scales: near the tube break, where the gas velocities are sonic, and far away from the break, where the flow velocities are three orders of magnitude lower. With a dry bundle and the full flow representing the break stage conditions, there is strong evidence that the TiO2 aerosols used (AMMD 2–4 μm, 32 nm primary particles) disintegrate into much smaller particles because of the sonic conditions at the break, hence promoting particle escape from the secondary and lowering the overall DF, which is found to be between 2.5 and 3. With a dry bundle and a small flow reproducing the far-field velocities, the overall bundle DF is of the order of 5, implying a DF of about 1.9 per stage. Extrapolating the results of the dry tests, it turns out that for steam generators with 9 or more stages, it is expected that substantial DF’s could be achieved when the break is located near the tube sheet region. In addition, better decontamination is expected using more representative proxies of severe accident aerosols (sticky, multicomponent particles), a topic which is yet to be investigated. When the bundle is flooded, the DF is between 45 and 5740, depending on the mass flow rate, the steam content, and the water submergence. The presence of steam in the carrier gas and subsequent condensation inside the broken tube causes aerosol deposition and blockages near the break, leading to an increase in the primary pressure. This has implications for real plant conditions, as aerosol deposits inside the broken tube will cause more flow to be diverted to the intact tubes, with a corresponding reduction in the source term to the secondary.


2021 ◽  
Author(s):  
Ru Zhang ◽  
Junyan Qing ◽  
Xiaolong Bi ◽  
Guanfu Jiang ◽  
Peiwei Sun ◽  
...  

Abstract Steam Generator (SG) is one of the main components of the power cycle in pressurized water reactor (PWR), and it is the hub of primary coolant circuit and secondary circuit, so the thermal hydraulic analysis of the SG is crucial in the system design and safety analysis of the PWR. The horizontal steam generator (HSG) is one of the main types SG in the PWR nuclear power plant (NPP), and its advantages are that it has more secondary side water capacity and good safety and reliability. The VVER-1000 is a PWR with a thermal power of 3000 MW, and has four HSGs for four loops. The RELAP5 has been used to model the VVER-1000’s HSG and performs the analysis described in this paper. The HSG tube bundle is modeled by three horizontal channels, and the steam control volumes above the heat transfer tube bundle are modeled with three volumes. The steam space is modeled as a steam separator and the steam reception shield is the dryer. The HSG secondary side downcomers are represented with a separate component to provide the power of the natural circulation. To verify the accuracy of the model, three different typical conditions are simulated. The simulation results show that the model built in this paper can correctly simulate the operation of the HSG in VVER-1000.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Yu ◽  
Minjun Peng

Interest in evaluation of severe accidents induced by extended station blackout (ESBO) has significantly increased after Fukushima. In this paper, the severe accident process under the high and low pressure induced by an ESBO for a small integrated pressurized water reactor (IPWR)-IP200 is simulated with the SCDAP/RELAP5 code. For both types of selected scenarios, the IP200 thermal hydraulic behavior and core meltdown are analyzed without operator actions. Core degradation studies firstly focus on the changes in the core water level and temperature. Then, the inhibition of natural circulation in the reactor pressure vessel (RPV) on core temperature rise is studied. In addition, the phenomena of core oxidation and hydrogen generation and the reaction mechanism of zirconium with the water and steam during core degradation are analyzed. The temperature distribution and time point of the core melting process are obtained. And the IP200 severe accident management guideline (SAMG) entry condition is determined. Finally, it is compared with other core degradation studies of large distributed reactors to discuss the influence of the inherent design characteristics of IP200. Furthermore, through the comparison of four sets of scenarios, the effects of the passive safety system (PSS) on the mitigation of severe accidents are evaluated. Detailed results show that, for the quantitative conclusions, the low coolant storage of IP200 makes the core degradation very fast. The duration from core oxidation to corium relocation in the lower-pressure scenario is 53% faster than that of in the high-pressure scenario. The maximum temperature of liquid corium in the lower-pressure scenario is 134 K higher than that of the high-pressure scenario. Besides, the core forms a molten pool 2.8 h earlier in the lower-pressure scenario. The hydrogen generated in the high-pressure scenario is higher when compared to the low-pressure scenario due to the slower degradation of the core. After the reactor reaches the SAMG entry conditions, the PSS input can effectively alleviate the accident and prevent the core from being damaged and melted. There is more time to alleviate the accident. This study is aimed at providing a reference to improve the existing IPWR SAMGs.


2019 ◽  
Vol 348 ◽  
pp. 14-23 ◽  
Author(s):  
JinHo Song ◽  
ByungHee Lee ◽  
SungIl Kim ◽  
GwangSoon Ha

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Jong Chull Jo ◽  
Frederick J. Moody

This paper presents a multidimensional numerical analysis of the transient thermal-hydraulic response of a steam generator (SG) secondary side to a double-ended guillotine break of the main steam line attached to the SG at a pressurized water reactor (PWR) plant. A simplified analysis model is designed to include both the SG upper space, which the steam occupies and a part of the main steam line between the SG outlet nozzle and the pipe break location upstream of the main steam isolation valve. The transient steam flow through the analysis model is simulated using the shear stress transport (SST) turbulence model. The steam is treated as a real gas. To model the steam generation by heat transfer from the primary coolant to the secondary side coolant for a short period during the blow down process following the main steam line break (MSLB) accident, a constant amount of steam is assumed to be generated from the bottom of the SG upper space part. Using the numerical approach mentioned above, calculations have been performed for the analysis model having the same physical dimensions of the main steam line pipe and initial operational conditions as those for an actual operating plant. The calculation results have been discussed in detail to investigate their physical meanings and validity. The results demonstrate that the present computational fluid dynamics (CFD) model is applicable for simulating the transient thermal-hydraulic responses in the event of the MSLB accident including the blowdown-induced dynamic pressure disturbance in the SG. In addition, it has been found that the dynamic hydraulic loads acting on the SG tubes can be increased by 2–8 times those loads during the normal reactor operation. This implies the need to re-assess the potential for single or multiple SG tube ruptures due to fluidelastic instability for ensuring the reactor safety.


Author(s):  
Osamu Kawabata ◽  
Masao Ogino

When the primary reactor system remain pressurized during core meltdown for a typical PWR plant, loop seals formed in the primary reactor system would lead to natural circulations in hot leg and steam generator. In this case, the hot gas released from the reactor core moves to a steam generator, and a steam generator tube would be failed with cumulative creep damage. From such phenomena, a high-pressure scenario during core meltdown may lead to large release of fission products to the environment. In the present study, natural circulation and creep damage in the primary reactor system accompanying the hot gas generation in the reactor core were discussed and the combining analysis with MELCOR and FLUENT codes were performed to examine the natural circulation behavior. For a typical 4 loop PWR plant, MELCOR code which can analyze for the severe accident progression was applied to the accident analyses from accident initiation to reactor vessel failure for the accident sequence of the main steam pipe break which is maintained at high pressure during core meltdown. In addition, using the CFD code FLUENT, fluid dynamics in the reactor vessel plenum, hot leg and steam generator of one loop were simulated with three-dimensional coordinates. And the hot gas natural circulation flow and the heat transfer to adjoining structures were analyzed using results provided by the MELCOR code as boundary conditions. The both ratios of the natural circulation flow calculated in the hot leg and the steam generator using MELCOR code and FLUENT code were obtained to be about 2 (two). And using analytical results of thermal hydraulic analysis with both codes, creep damage analysis at hottest temperature points of steam generator tube and hot leg were carried out. The results in both cases showed that a steam generator tube would be failed with creep rupture earlier than that of hot leg rupture.


Sign in / Sign up

Export Citation Format

Share Document