A Digital Photographic Study on Nucleate Boiling in Subcooled Flow for Water and Refrigerant 134a Fluids

Author(s):  
In Cheol Bang ◽  
Won-Pil Baek ◽  
Soon Heung Chang

The behavior of near-wall bubbles in subcooled flow boiling has been investigated photographically for water flow in vertical, one-side heated and rectangular channels at mass fluxes of 500, 1500, 2000 kg/m2s under atmospheric pressure and for R134a in channels of the same kind at mass fluxes of 1000, 2000 kg/m2s under 7 bar. Digital photographic techniques are used for the visualization, which are rapidly advanced in recent. Primary attention is given to the bubble coalescence phenomenon and the structure of the near-wall bubble layer. At subcooled and low-quality conditions of both fluids, discrete attached bubbles, sliding bubbles, small coalesced bubbles and large coalesced bubbles or vapor clots are observed on the heated surface as the heat flux is increased from a low value. Particularly for R134a, vapor remnants below discrete bubble on the heating surface are observed. Nucleation site density increases with the increases in heat flux and channel-averaged enthalpy, while discrete bubbles coalesce and form large bubbles, resulting in large vapor clots. Waves formed on the surface of the vapor clots are closely related to Helmholtz instability. At sufficiently high heat fluxes, three characteristic layers were observed in the heated channel: (a) a superheated liquid layer with small bubbles attached on the heated wall, (b) a flowing bubble layer consisting of large coalesced bubbles over the superheated liquid layer, and (c) the liquid core over the flowing bubble layer.

1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


Author(s):  
Kan Zhou ◽  
Junye Li ◽  
Zhao-zan Feng ◽  
Wei Li ◽  
Hua Zhu ◽  
...  

For improving the functionality and signal speed of electronic devices, electronic components have been miniaturized and an increasing number of elements have been packaged in the device. As a result there has been a steady rise in the amount of heat necessitated to be dissipated from the electronic device. Recently microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging, In the present study an experimental study of subcooled flow boiling in a high-aspect-ratio, one-sided heating rectangular microchannel with gap depth of 0.52 mm and width of 5 mm was conducted with deionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 °C. The boiling curves, flow pattern and onset of nucleate boiling of subcooled flow boiling were investigated through instrumental measurements and a high speed camera. It was found that the slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, and the slope was greater for lower mass fluxes, with lower superheat required for boiling incipience. As for the visualization images, for relatively lower mass fluxes the bubbles generated were larger and not easy to depart from the vertical upward placed narrow microchannel wall, giving elongated bubbly flow and reverse backflow. The thin film evaporation mechanism dominated the entire test section due to the elongated bubbles and transient local dryout as well as rewetting occurred. Meanwhile the initiative superheat and heat flux of onset of nucleate boiling were compared with existing correlations in the literature with good agreement.


Author(s):  
Nilanjana Basu ◽  
Gopinath R. Warrier ◽  
Vijay K. Dhir

In this work a mechanistic model for nucleate boiling heat flux as a function of wall superheat has been developed. The premise of the proposed model is that the entire energy from the wall is first transferred to the superheated liquid layer adjacent to the wall. A fraction of this energy is then utilized for vapor generation. Contribution of each of the heat transfer mechanisms — forced convection, transient conduction, and vapor generation, has been quantified in terms of nucleation site densities, bubble departure and lift off diameters, bubble release frequency, flow parameters like velocity, inlet subcooling, wall superheat, and fluid and surface properties including system pressures. To support the model development, subcooled flow boiling experiments were conducted at pressures of 1.03 to 3.2 bar for a wide range of mass fluxes (124 to 926 kg/m2s), heat fluxes (2.5 to 90 W/cm2) and for contact angles varying from 30° to 90°. Model validation has been carried out with low-pressure data obtained from present work and the wall heat flux predictions are within ± 30% of experimental values. Application of the model to high-pressure data available in literature also showed good agreement, signifying that the model can be extended to all pressures.


Author(s):  
Hongsheng Yuan ◽  
Sichao Tan ◽  
Kun Cheng ◽  
Xiaoli Wu ◽  
Chao Guo ◽  
...  

The flow rate can fluctuate in offshore nuclear power systems which are exposed to wind and waves, as well as in loops where flow instabilities occur, resulting in different thermal-hydraulic characteristics compared with that under steady flow. Among the thermal-hydraulic characteristics, onset of nucleate boiling (ONB) model determines whether the fluid is boiling, and boiling heat transfer is crucial to equipment performance and safety, both being key issues in subcooled flow boiling. Therefore, an experimental study was conducted to investigate how an imposed periodic flow oscillation affects the boiling inception and heat transfer of subcooled flow boiling of water in a vertical tube. The experiments were conducted under atmospheric pressure with the average flow rate ranging from 96kg/m2s to 287kg/m2s and heat flux ranging from 10kW/m2 to 197kW/m2. The relative pulsatile amplitude range is 0.1–0.3 and pulsatile period range is 10s-30s. Photographic images and thermal parameters such as temperatures and flow rate were recorded. The lack of nucleation site on the heated surface of the test section results in high wall superheat at ONB. The effects of pulsatile amplitude and period on superheat at boiling onset and average heat transfer were analyzed. The results show that the superheat at boiling inception is decreased when the average heat flux is lower than the heat flux at boiling inception of the corresponding steady flow, and the superheat at boiling onset is increased when the average heat flux is higher than the heat flux at boiling onset of the corresponding steady flow. The above effect of flow rate pulsation on superheat increases with increasing amplitude and decreasing period, and the mechanism can be explained by boiling nucleation theory. The lack of large active nucleation site also affects the boiling heat transfer. By comparing the contribution of nucleate boiling to heat transfer with the widely used Cooper’s pool boiling correlation, the subcooled flow boiling was found suppressed by convection. The average heat transfer of both the intermittent flow boiling and the single phase flow is influenced by flow oscillation.


1993 ◽  
Vol 115 (1) ◽  
pp. 78-88 ◽  
Author(s):  
C. O. Gersey ◽  
I. Mudawar

The effects of chip protrusion on the forced-convection boiling and critical heat flux (CHF) of a dielectric coolant (FC-72) were investigated. The multi-chip module used in the present study featured a linear array of nine, 10 mm x 10 mm, simulated microelectronic chips which protruded 1 mm into a 20-mm wide side of a rectangular flow channel. Experiments were performed in vertical up flow with 5-mm and 2-mm channel gap thicknesses. For each configuration, the velocity and subcooling of the liquid were varied from 13 to 400 cm/s and 3 to 36° C, respectively. The nucleate boiling regime was not affected by changes in velocity and subcooling, and critical heat flux generally increased with increases in either velocity or subcooling. Higher single-phase heat transfer coefficients and higher CHF values were measured for the protruded chips compared to similar flush-mounted chips. However, adjusting the data for the increased surface area and the increased liquid velocity above the chip caused by the protruding chips yielded a closer agreement between the protruded and flush-mounted results. Even with the velocity and area adjustments, the most upstream protruded chip had higher single-phase heat transfer coefficients and CHF values for high velocity and/or highly-subcooled flow as compared the downstream protruded chips. The results show that, except for the most upstream chip, the performances of protruded chips are very similar to those of flush-mounted chips.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012053
Author(s):  
A. S. Shamirzaev

Abstract An experimental study of the pressure drop under subcooled flow boiling of the refrigerant R141b in a system with two slotted microchannels was carried out. A copper block with two microchannels 2 mm wide, 0.4 mm deep, and 16 mm long was used as an experimental section for testing. The mass flow rate varied in the range from 1 to 4 g/s, the initial subcooling from 20°C to 50°C. Experimental data show a significant decrease in the pressure drop when the critical heat flux is reached. The experimental data are compared with the model known from the literature. Experimental data show that the occurrence of nucleate boiling incipience at subcooled boiling corresponds to a larger heat flux than that given by the recommended correlation.


Author(s):  
Akira Oshima ◽  
Koichi Suzuki ◽  
Chungpyo Hong ◽  
Masataka Mochizuki

It has been considered that the dry-out is easy to occur in boiling heat transfer for a small channel, a mini or microchannel because the channel was easily filled with coalescing vapor bubbles. In the present study, the experiments of subcooled flow boiling of water were performed under atmospheric condition for a horizontal rectangular channel of which size is 1mm in height and 1mm in width with a flat heating surface of 10mm in length and 1mm in width placed on the bottom of the channel. The heating surface is a top of copper heating block and heated by ceramics heaters. In the high heat flux region of nucleate boiling, about 70 ∼ 80 percent of heating surface was covered with a large coalescing bubble and the boiling reached critical heat flux (CHF) by a high speed video observation. In the beginning of transition boiling, coalescing bubbles were collapsed to many fine bubbles and microbubble emission boiling was observed at higher liquid subcooling than 30K. The maximum heat flux obtained was 8MW/m2 (800W/cm2) at liquid subcooling of higher than 40K and the liquid velocity of 0.5m/s. However, the surface temperature was extremely higher than that of centimeter scale channel. The high speed video photographs indicated that microbubble emission boiling occurs in the deep transition boiling region.


2002 ◽  
Vol 124 (4) ◽  
pp. 717-728 ◽  
Author(s):  
Nilanjana Basu ◽  
Gopinath R. Warrier ◽  
Vijay K. Dhir

The partitioning of the heat flux supplied at the wall is one of the key issues that needs to be resolved if one is to model subcooled flow boiling accurately. The first step in studying wall heat flux partitioning is to account for the various heat transfer mechanisms involved and to know the location at which the onset of nucleate boiling (ONB) occurs. Active nucleation site density data is required to account for the energy carried away by the bubbles departing from the wall. Subcooled flow boiling experiments were conducted using a flat plate copper surface and a nine-rod (zircalloy-4) bundle. The location of ONB during the experiments was determined from visual observations as well as from the thermocouple output. From the data obtained it is found that the heat flux and wall superheat required for inception are dependent on flow rate, liquid subcooling, and contact angle. The existing correlations for ONB underpredict the wall superheat at ONB in most cases. A correlation for predicting the wall superheat and wall heat flux at ONB has been developed from the data obtained in this study and that reported in the literature. Experimental data are within ±30 percent of that predicted from the correlation. Active nucleation site density was determined by manually counting the individual sites in pictures obtained using a CCD camera. Correlations for nucleation site density, which are independent of flow rate and liquid subcooling, but dependent on contact angle have been developed for two ranges of wall superheat—one below 15°C and another above 15°C.


2020 ◽  
Vol 3 (2) ◽  
pp. 33
Author(s):  
M. M. Sarafraz ◽  
H. Arya

The subcooled flow boiling heat transfer characteristics of n-heptane and water is conducted for an upward flow inside the vertical annulus with an inner gap of 30 mm, in different heat fluxes up to 132kW.m-2, subcooling max.:30C, flow rate: 1.5 to 3.5lit.min-1 under the atmospheric pressure. The measured data indicate that the subcooled flow boiling heat transfer coefficient significantly increases with increasing liquid flow rate and heat flux and slightly decreases with decreasing the subcooling level. Although results demonstrate that subcooling is the most effective operation parameter on onset of nucleate boiling such that with decreasing the subcooling level, the inception heat flux significantly decreases. Besides, recorded results from the visualization of flow show that the mean diameter of the bubbles departing from the heating surface decreases slightly with increasing the flow rate and slightly decreases with decreasing the subcooling level. Meanwhile, comparisons of the present heat transfer data for n-heptane and water in the same annulus and with some existing correlations are investigated. Results of comparisons reveal an excellent agreement between experimental data and those of calculated by Chen Type model and Gungor–Winterton predicting correlation.


Sign in / Sign up

Export Citation Format

Share Document