Subcooled Flow Boiling in a Minichannel

Author(s):  
Akira Oshima ◽  
Koichi Suzuki ◽  
Chungpyo Hong ◽  
Masataka Mochizuki

It has been considered that the dry-out is easy to occur in boiling heat transfer for a small channel, a mini or microchannel because the channel was easily filled with coalescing vapor bubbles. In the present study, the experiments of subcooled flow boiling of water were performed under atmospheric condition for a horizontal rectangular channel of which size is 1mm in height and 1mm in width with a flat heating surface of 10mm in length and 1mm in width placed on the bottom of the channel. The heating surface is a top of copper heating block and heated by ceramics heaters. In the high heat flux region of nucleate boiling, about 70 ∼ 80 percent of heating surface was covered with a large coalescing bubble and the boiling reached critical heat flux (CHF) by a high speed video observation. In the beginning of transition boiling, coalescing bubbles were collapsed to many fine bubbles and microbubble emission boiling was observed at higher liquid subcooling than 30K. The maximum heat flux obtained was 8MW/m2 (800W/cm2) at liquid subcooling of higher than 40K and the liquid velocity of 0.5m/s. However, the surface temperature was extremely higher than that of centimeter scale channel. The high speed video photographs indicated that microbubble emission boiling occurs in the deep transition boiling region.

Author(s):  
Tomoyuki Nomura ◽  
Michael V. Shustov ◽  
Koichi Suzuki ◽  
Chungpyo Hong ◽  
Yury A. Kuzma-Kichta

Subcooled flow boiling has been investigated for horizontal mini and micro channels of which hydraulic diameters are 1mm and 150μm, respectively for high heat flux cooling in electronics. The heating surface is 1mm in width and 10mm in length for the mini channel. Eleven micro grooving are made on the copper heating block of 5.25mm×5.25mm. Aqueous solutions of ethanol, 10% and 50% in mass concentration, are used as boiling liquid for the micro channel. Microbubble emission boiling (MEB) of water is generated at liquid subcooling of 40K in the mini channel as same cases of conventional macro channels and the maximum heat flux obtained is a 10MW/m2 at liquid velocity of 1m/s (1000kg/m2s). However, the boiling turns to film boiling at low liquid velocity, 0.3m/s (300kg/m2s) for an example. In subcooled boiling of aqueous solutions, the heat flux becomes small for the lower ethanol concentration. The critical heat fluxes are well agreed with the existing theories and the maximum heat fluxes are higher than CHF. However, no micro bubble emission boiling is observed in subcooled flow boiling of mini channels and the CHF is considerably smaller than the existing theories. It is difficult to generate MEB for micro channels with heating surface of large thermal capacity because the coalescing bubbles formed on the heating surface are filled up in the channel and the liquid vapor exchange is disturbed.


2020 ◽  
Vol 3 (2) ◽  
pp. 33
Author(s):  
M. M. Sarafraz ◽  
H. Arya

The subcooled flow boiling heat transfer characteristics of n-heptane and water is conducted for an upward flow inside the vertical annulus with an inner gap of 30 mm, in different heat fluxes up to 132kW.m-2, subcooling max.:30C, flow rate: 1.5 to 3.5lit.min-1 under the atmospheric pressure. The measured data indicate that the subcooled flow boiling heat transfer coefficient significantly increases with increasing liquid flow rate and heat flux and slightly decreases with decreasing the subcooling level. Although results demonstrate that subcooling is the most effective operation parameter on onset of nucleate boiling such that with decreasing the subcooling level, the inception heat flux significantly decreases. Besides, recorded results from the visualization of flow show that the mean diameter of the bubbles departing from the heating surface decreases slightly with increasing the flow rate and slightly decreases with decreasing the subcooling level. Meanwhile, comparisons of the present heat transfer data for n-heptane and water in the same annulus and with some existing correlations are investigated. Results of comparisons reveal an excellent agreement between experimental data and those of calculated by Chen Type model and Gungor–Winterton predicting correlation.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Kan Zhou ◽  
Hua Zhu ◽  
Wei Li ◽  
Junye Li ◽  
Kuang Sheng ◽  
...  

Recently, microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging and integration. In this study, an experimental investigation of subcooled flow boiling in a high-aspect-ratio rectangular microchannel was conducted with de-ionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and the imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 °C. The boiling curves, onset of nucleate boiling (ONB), and flow patterns of subcooled flow boiling were investigated with the aid of instrumental measurements and a high-speed camera. The slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, with lower superheat required of boiling incipience for lower mass fluxes. Meanwhile, the initiative superheat and heat flux of onset of nucleate boiling were compared with the existing correlations in the literature with good agreement. As for the flow visualization images, slug flow and reverse backflow were observed, where transient local dryout as well as rewetting occurred. A facile image processing tool was developed to profile the transient development and progression of the liquid–vapor interface and partial dryout patches in microchannels, which proved that the physical quantities of bubble dynamics for the elongation period during subcooled boiling could be well detected and calculated.


Author(s):  
Hayato Kubota ◽  
Tatsuhiro Ishida ◽  
Tomio Okawa ◽  
Isao Kataoka ◽  
Michitsugu Mori

A visual study of water subcooled flow boiling was conducted to clarify the mechanism of triggering the net vapor generation (NVG). The test section was a transparent sapphire grass tube of 20 mm in inside diameter; a high-speed camera was used to capture the behavior of vapor bubbles. In the present experiments, the vapor void fraction in the heated tube was expressed as the function of the following bubble parameters: nucleation site density, frequency of bubble release, bubble lifetime, and bubble size. Among these four bubble parameters, the bubble size had a particularly strong influence on the vapor void fraction: the void fraction was approximately proportional to the forth power of mean bubble diameter. Consequently, mean bubble diameter should be large enough for the vapor void fraction to increase rapidly with the wall heat flux. In low flowrate experiments, bubbles generated at nucleation sites were relatively large at the onset of nucleate boiling (ONB). The heat flux at ONB hence appeared the reasonable approximation of that at NVG. Whereas, in high flowrate experiments, bubbles were small at ONB and much higher heat flux was necessary to obtain large bubbles. Thus, the heat flux required to trigger NVG was much higher than that at ONB. It was concluded in the present experimental conditions that accurate evaluation of mean bubble diameter was of significant importance in predicting the onset of net vapor generation.


Author(s):  
C. Schneider ◽  
R. Hampel ◽  
A. Traichel ◽  
A. Hurtado ◽  
S. Meissner ◽  
...  

During full power operation of Pressurized Water Reactors (PWR), heat transfer phenomena of subcooled nucleate boiling may occur on the surface of the fuel rods. Despite high subcooling, this behavior results from the high heat flux up to 100 W/cm2 where vapor bubbles condensate when they are detached from the rod surface. In case of an accident with disturbance of cooling during transition from bubble to film boiling the critical heat flux (CHF) can be reached. This paper outlines the experimental investigation of heat transfer during subcooled flow boiling on a capillary tube. To investigate the heat transfer processes under these boiling conditions, a test facility for flow boiling with access for optical measuring methods was constructed. The temperature is measured with a thermocouple inside the tube while boiling bubbles are generated on the outside. For different subcooling and flow velocity the heat flux is increased in a range from zero up to approximately 115 W/cm2. The major aims of these investigations are to generate a database for modeling of these dependencies in computational fluid dynamic (CFD) codes and enhance the knowledge of phenomenological effects of subcooled flow boiling. This provides a contribution for the prediction of the critical heat flux with simulation codes.


Author(s):  
Kan Zhou ◽  
Junye Li ◽  
Zhao-zan Feng ◽  
Wei Li ◽  
Hua Zhu ◽  
...  

For improving the functionality and signal speed of electronic devices, electronic components have been miniaturized and an increasing number of elements have been packaged in the device. As a result there has been a steady rise in the amount of heat necessitated to be dissipated from the electronic device. Recently microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging, In the present study an experimental study of subcooled flow boiling in a high-aspect-ratio, one-sided heating rectangular microchannel with gap depth of 0.52 mm and width of 5 mm was conducted with deionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 °C. The boiling curves, flow pattern and onset of nucleate boiling of subcooled flow boiling were investigated through instrumental measurements and a high speed camera. It was found that the slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, and the slope was greater for lower mass fluxes, with lower superheat required for boiling incipience. As for the visualization images, for relatively lower mass fluxes the bubbles generated were larger and not easy to depart from the vertical upward placed narrow microchannel wall, giving elongated bubbly flow and reverse backflow. The thin film evaporation mechanism dominated the entire test section due to the elongated bubbles and transient local dryout as well as rewetting occurred. Meanwhile the initiative superheat and heat flux of onset of nucleate boiling were compared with existing correlations in the literature with good agreement.


1994 ◽  
Vol 29 (5) ◽  
pp. 319-327 ◽  
Author(s):  
K. W. Lin ◽  
C. H. Lee ◽  
L. W. Hourng ◽  
J. C. Hsu

Author(s):  
Hongsheng Yuan ◽  
Sichao Tan ◽  
Kun Cheng ◽  
Xiaoli Wu ◽  
Chao Guo ◽  
...  

The flow rate can fluctuate in offshore nuclear power systems which are exposed to wind and waves, as well as in loops where flow instabilities occur, resulting in different thermal-hydraulic characteristics compared with that under steady flow. Among the thermal-hydraulic characteristics, onset of nucleate boiling (ONB) model determines whether the fluid is boiling, and boiling heat transfer is crucial to equipment performance and safety, both being key issues in subcooled flow boiling. Therefore, an experimental study was conducted to investigate how an imposed periodic flow oscillation affects the boiling inception and heat transfer of subcooled flow boiling of water in a vertical tube. The experiments were conducted under atmospheric pressure with the average flow rate ranging from 96kg/m2s to 287kg/m2s and heat flux ranging from 10kW/m2 to 197kW/m2. The relative pulsatile amplitude range is 0.1–0.3 and pulsatile period range is 10s-30s. Photographic images and thermal parameters such as temperatures and flow rate were recorded. The lack of nucleation site on the heated surface of the test section results in high wall superheat at ONB. The effects of pulsatile amplitude and period on superheat at boiling onset and average heat transfer were analyzed. The results show that the superheat at boiling inception is decreased when the average heat flux is lower than the heat flux at boiling inception of the corresponding steady flow, and the superheat at boiling onset is increased when the average heat flux is higher than the heat flux at boiling onset of the corresponding steady flow. The above effect of flow rate pulsation on superheat increases with increasing amplitude and decreasing period, and the mechanism can be explained by boiling nucleation theory. The lack of large active nucleation site also affects the boiling heat transfer. By comparing the contribution of nucleate boiling to heat transfer with the widely used Cooper’s pool boiling correlation, the subcooled flow boiling was found suppressed by convection. The average heat transfer of both the intermittent flow boiling and the single phase flow is influenced by flow oscillation.


Author(s):  
Fangxin Hou ◽  
Huajian Chang ◽  
Yufeng Zhao ◽  
Ming Zhang ◽  
Peipei Chen ◽  
...  

It is widely believed that the behavior of vapor bubble/blanket over heating surface plays a critical role in determining the critical heat flux (CHF) in the subcooled flow boiling. Various CHF models are based on phenomenon observations of vapor bubble/blanket in the flow channel and use vapor bubble/blanket physical parameters to determine CHF values. In this study, subcooled flow boiling tests were conducted on the experiment facility “Test of External Vessel Surface with Enhanced Cooling” (TESEC). A series of natural circulation subcooled flow boiling CHF experiments is performed in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction at various inclination angles of the test section. With the assistance of high speed video technology, the process of flow boiling in the experiments was recorded and analyzed. A novel image processing method based on a MATLAB code is used to analyze high speed images at 999 frames/second and is able to provide detailed statistical information of vapor behavior on the heating surface. By this process, the static and dynamic information of vapor blanket is obtained at the pre-CHF conditions at various inclination conditions of flow channels (30 to 90 degrees). In addition, the Fast Fourier Transform (FFT) algorithm is used to further analyze the dynamic behavior of the vapor blanket.


Sign in / Sign up

Export Citation Format

Share Document