Simple Analytical U-Tube Benchmarks Appropriate for Testing of Pipe-Network Computer Codes

Author(s):  
N. I. Kolev

Partially heated U-tube configurations are characteristic idealizations for the so called building condensers of future nuclear reactors with passive safety systems. In this paper three simple cases of natural circulation problems are analyzed and analytical solutions are generated. This solutions are recommended for validation of pipe network computer codes. As an example the procedure is demonstrated for the IVA computer code. The usefulness of the obtained solutions is demonstrated discussing the inherent safety behavior of the building condenser of the Framatome ANP SWR 1000 power plant being under development.

Author(s):  
L E Hochreiter ◽  
S V Fanto ◽  
L E Conway ◽  
L K Lau

In support of the development of AP600, Westinghouse is conducting two integral systems tests to examine the performance of the passive safety systems. A full-height, full-pressure test is being performed to simulate a small loss-of-coolant, steam generator tube rupture and large steam line break events. A one-quarter scale, low-pressure test is being performed to simulate transients with emphasis on the transition to the natural circulation post-accident, long-term cooling mode and to demonstrate the long-term cooling capability. Each of the tests will provide detailed experimental results for verification of the accident analysis computer codes.


Author(s):  
M. E. Ricotti ◽  
F. Bianchi ◽  
L. Burgazzi ◽  
F. D’Auria ◽  
G. Galassi

The strategy of approach to the problem moves from the consideration that a passive system should be theoretically more reliable than an active one. In fact it does not need any external input or energy to operate and it relies only upon natural physical laws (e.g. gravity, natural circulation, internally stored energy, etc.) and/or “intelligent” use of the energy inherently available in the system (e.g. chemical reaction, decay heat, etc.). Nevertheless the passive system may fail its mission not only as a consequence of classical mechanical failure of components, but also for deviation from the expected behaviour, due to physical phenomena mainly related to thermalhydraulics or due to different boundary and initial conditions. The main sources of physical failure are identified and a probability of occurrence is assigned. The reliability analysis is performed on a passive system which operates in two-phase, natural circulation. The selected system is a loop including a heat source and a heat sink where the condensation occurs. The system behavior under different configurations has been simulated via best-estimate code (Relap5 mod3.2). The results are shown and can be treated in such a way to give qualitative and quantitative information on the system reliability. Main routes of development of the methodology are also depicted.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Siniša Šadek ◽  
Davor Grgić ◽  
Zdenko Šimić

The integrity of the containment will be challenged during a severe accident due to pressurization caused by the accumulation of steam and other gases and possible ignition of hydrogen and carbon monoxide. Installation of a passive filtered venting system and passive autocatalytic recombiners allows control of the pressure, radioactive releases, and concentration of flammable gases. Thermal hydraulic analysis of the containment equipped with dedicated passive safety systems after a hypothetical station blackout event is performed for a two-loop pressurized water reactor NPP with three integral severe accident codes: ASTEC, MELCOR, and MAAP. MELCOR and MAAP are two major US codes for severe accident analyses, and the ASTEC code is the European code, joint property of Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France) and Gesellschaft für Anlagen und Reaktorsicherheit (GRS, Germany). Codes’ overall characteristics, physics models, and the analysis results are compared herein. Despite considerable differences between the codes’ modelling features, the general trends of the NPP behaviour are found to be similar, although discrepancies related to simulation of the processes in the containment cavity are also observed and discussed in the paper.


Author(s):  
Andrea Bersano ◽  
Mario De Salve ◽  
Cristina Bertani ◽  
Nicolò Falcone ◽  
Bruno Panella

Within the field of research and development of innovative nuclear reactors, in particular Generation IV reactors and Small Modular Reactors (SMR), the design and the improvement of safety systems play a crucial role. Among all the safety systems high attention is dedicated to passive systems that do not need external energy to operate, with a very high reliability also in the case of station blackout, and which are largely used in evolutionary technology reactors. The aim of this work is the experimental and numerical analysis of a passive system that operates in natural circulation in order to study the mechanism and the efficiency of heat removal. The final goal is the development of a methodology that can be used to study this class of systems and to assess the thermal-hydraulic code RELAP5 for these specific applications. Starting from a commercial size system, which is the decay heat removal system of the experimental lead cooled reactor ALFRED, an experimental facility has been designed, built and tested with the aim of studying natural circulation in passive systems for nuclear applications. The facility has been simulated and optimized using the thermal-hydraulic code RELAP5-3D. During the experimental tests, temperatures and pressures are measured and the experimental results are compared with the ones predicted by the code. The results show that the system operates effectively, removing the given thermal power. The code can predict well the experimental results but high attention must be dedicated to the modeling of components where non-condensable gases are present (condenser pool and surrounding ambient). This facility will be also used to validate the scaling laws among systems that operate in natural circulation.


Author(s):  
Frances Viereckl ◽  
R. Manthey ◽  
C. Schuster ◽  
A. Hurtado

Passive safety systems represent one field of research concerning the safety-related enhancement of nuclear power plants. Passive safety systems can ensure the safe removal of decay heat without an input of electrical or mechanical energy for commissioning or operation. The heat removal chain is guaranteed on the basis of the physical principles condensation, heat conduction, boiling and natural circulation. The thermal hydraulic processes in passive safety systems disagree with the plant-specific thermal hydraulics because of different operating conditions. Since the established system codes are validated for the plant-specific conditions, the operational behavior of passive safety systems is currently not sufficiently predictable. On this account, the German Federal Ministry of Education and Research initiated the joint project PANAS to investigate the decay heat removal by passive safety systems on the basis of experimental analyses, modelling and validation. Object is the heat removal chain in advanced boiling water reactors consisting of emergency condensers (EC; heat transfer from reactor core to core flooding pools) and containment cooling condensers (CCC; heat transfer from the containment to the shielding/storage pool). At Technische Universität Dresden, the test facility GENEVA was constructed for the experimental investigation of the operational behavior of the CCC. GENEVA models the CCC concerning the original thermal hydraulic conditions of the heat source and heat sink as well as the tube geometry for the heat transfer. In this way, the comparability of the thermal hydraulic phenomena is given. Previous experiments focused on the stability analysis of the natural circulation in the test facility. The focus of PANAS is on the condensation process of saturated steam at the outside of the slightly inclined tubes and the convection respectively boiling of both a stable and an unstable two-phase flow inside these tubes. For a detailed analysis, condensation rates at the outside as well as the flow structure inside have to be investigated experimentally. Therefore, the instrumentation in the heat transfer section of GENEVA is considerably enhanced. This enhancement comprises an optical measuring system for the film thickness or droplet size of the condensate, a tipping scale for the condensate mass flow, void probes for the steam void fraction and more than 100 thermocouples outside and inside the tubes for temperature profiles in axial, radial and azimuthal direction. By reference to these parameters, it is possible to examine the thermal hydraulic models for the heat transfer. The paper outlines the available models in system codes regarding condensation and boiling concerning the operating conditions of the CCC. Since dropwise condensation could be observed in previous experiments and the condensation models in system codes focus on film condensation, the review is extended beyond native models. A sensitivity analysis of the reviewed models regarding condensation shows huge differences concerning the value of the heat transfer coefficient. Furthermore, the courses of the condensation models present different dependencies regarding the heat transfer coefficient and the wall temperature. Due to this, the necessity of the experimental investigation and later the revision of the condensation models in system codes is confirmed. The comparison of the reviewed models with first experimental results outlines the tendency for the numerical description of the condensation process. Based on the investigation and validation of models concerning the heat transfer processes in the CCC, the operational behavior will be accurately predictable by established system codes, which enhances the safety investigation and the licensing. Although the conception of this investigation is founded on the CCC, the adapted models will be able to characterize the heat transfer processes boiling and condensation for saturation conditions at a relatively low pressure (maximum 4 bar) and for natural convection in general.


Author(s):  
Luciano Burgazzi ◽  
Michel Marques

The treatment of passive safety systems within the probabilistic safety assessment models is a difficult and challenging task. The main concern arises from the nature of the passive systems whose predominant operating principles are based on physical phenomena rather than on active components. The present study provides a consistent approach for the integration of passive safety systems into fault tree and event tree based Probabilistic Safety Assessment (PSA) model of accident sequences, in the fashion of and in combination with a front line system or a human action. With reference to the thermal-hydraulic passive systems (e.g. natural circulation systems), in addition to the component failures (i.e. mechanical and electrical faults), the impairment of the physical principle upon which the system relies, deserves special consideration. This makes the relative assessment process different as regards the system model commonly adopted in the fault tree approach (i.e. exponential failure model). For the thermal-hydraulic passive system, since the failure process is driven mainly by the occurrence of the phenomenological failure modes, each pertinent basic event will be characterized by defined critical parameters (e.g. non-condensable fraction) that are expected to drive the failure mechanisms. An application of this approach is presented, with reference to a system designed for decay heat removal of advanced Light Water Reactors, relying on natural circulation and provided with a heat exchanger immersed in a cooling pool, acting as heat sink, and connected to the pressure vessel via steam and condensate lines.


Sign in / Sign up

Export Citation Format

Share Document