The DBA Analysis of One Control Rod Withdrawal Out of the HTR-10GT Core

Author(s):  
Mingang Lang ◽  
Yujie Dong

The 10MW High Temperature Gas Cooled Test Reactor (HTR-10) has been built in Institute of Nuclear and New Energy Technology (INET) and has been operating successfully since the beginning of 2003. The core outlet temperature of HTR-10 is 700°C. To verify the technology of gas-turbine direct cycle, INET has planned to increase its core outlet temperature to 750°C and use a helium gas turbine instead of the steam generator (then the reactor is called HTR-10GT). Though HTR-10 has good intrinsic safety, the design basic accidents and beyond design basic accidents of HTR10-GT must be analyzed according to China’s nuclear regulations due to changed operation parameters. THERMIX code system is used to study the accident on one control rod withdrawal out of the core by a mistake. After a control rod in the side reflector was withdrawn out at a speed of 1 cm/s by a mistake, a positive reactivity was inserted and the reactor power increased and the temperature of the core increased. When the neutron flux of power measuring range exceeded 123% and the core outlet temperature was lager than 800°C, the reactor was scrammed. During the accident sequence the maximum fuel temperature was 1200.9°C. It was lower than the fuel temperature limitation of 1230°C. The paper compares the analysis result of HTR10-GT to those of HTR-10. The results shows that the HTR-10GT is still safe during the accident though its operating temperature is higher than HTR-10 when the fuel safety limits are the same.

Author(s):  
Minggang Lang ◽  
Yujie Dong

The 10MW High Temperature Gas Cooled Test Reactor (HTR-10) has been built in Institute of Nuclear and New Energy Technology (INET) and has been operating successfully since the beginning of 2003. The core outlet temperature of HTR-10 is 700°C. To verify the technology of gas-turbine direct cycle, at first INET had a plan to increase its core outlet temperature to 750°C and use a helium gas turbine instead of the steam generator (then the reactor is called HTR-10GT). Though HTR-10 has good intrinsic safety, the design basic accidents and beyond design basis accidents of HTR-10GT must be analyzed according to China’s nuclear regulations due to changed operation parameters. THERMIX code system is used to study the ATWS accident of one control rod withdrawal out of the core by a mistake. After a control rod in the side reflector was withdrawn out at a speed of 1 cm/s by a mistake, a positive reactivity was inserted and the reactor power increased and the temperature of the core increased. When the neutron flux of power measuring range exceeded 123% and the core outlet temperature was greater than 800°C, the reactor should scram. It was supposed that all the control rods in the reflectors had been blocked and the reactor could not scram. Thus the accident went on and the core temperature and the system pressure increased but the reactor shutdown at last because of its natural negative temperature reactivity feedback mechanism. The residual heat would be removed out of the core by the cavity cooling system. During the accident sequence the maximum fuel temperature was 1242.4°C. It was a little higher than 1230°C–the fuel temperature limitation of HTR-10. Now the sphere fuel used in HTR-10GT will also be used in HTR-PM and the temperature limitation raised to 1620°C, so the HTR-10GT is safe during the ATWS of one control rod withdrawal out of the core. The paper also compares the analysis result of HTR10-GT to those of HTR-10. The results shows that the HTR-10GT is still safe during the accident though its operating temperature is higher than HTR-10. The analysis will be helpful to HTR-PM because they have the same outlet temperature of the core.


Author(s):  
Minggang Lang

The 10MW High Temperature Gas Cooled Test Reactor (HTR-10) has been built in Institute of Nuclear and New Energy Technology (INET) and has been operating successfully since the beginning of 2003. The core outlet temperature of HTR-10 is 700°C. To verify the technology of gas-turbine direct cycle, at first INET had a plan to increase its core outlet temperature to 750°C and to use a helium gas turbine instead of the steam generator (then the reactor is called HTR-10GT). Though HTR-10 has good intrinsic safety, the design basis accidents and beyond design basis accidents of HTR10-GT must be analyzed according to China’s nuclear regulations due to changed operation parameters. THERMIX code system is used to study the ATWS accident of one control rod withdrawal out of the core by a mistake under the loss of the system pressure. After a control rod in the side reflector was withdrawn out at a speed of 1 cm/s by a mistake, a positive reactivity was inserted. At the same time, the system pressure was supposed to lose by some reason. Thus the reactor power increased and the temperature of the core increased. And the protection system warns with two scram signal: too high of the negative varying rate of the system pressure and too high of the reactor power, which should induce the reactor to scram. It was supposed that all the control rods in the reflectors had been blocked and the reactor could not scram. Thus the accident went on and the core temperature and the system pressure continued to increase but the reactor shutdown at last because of its natural negative temperature reactivity feedback mechanism. The residual heat would be removed out of the core by the cavity cooling system. During the accident sequence the maximum fuel temperature was 1203.4°C. It was a little bit lower than 1230°C — the fuel temperature limitation of HTR-10 and there is no release of any radioactivity. So the HTR-10GT is safe during the ATWS of one control rod withdrawal out of the core. The paper also compares the analysis result of HTR10-GT to those of HTR-10. The results shows that the HTR-10GT is still safe during the accident though its operating temperature is higher than HTR-10.


Author(s):  
Isao Minatsuki ◽  
Sunao Oyama ◽  
Yorikata Mizokami ◽  
Bernard Ballot

In the world now, several types of indirect system concept have been investigated for the High Temperature Gas cooled Reactor power plant (HTGR). From a point of optimization of HTGR, it is important to investigate and to compare their power conversion systems from a technical and an economical view point. In the first step of this study, an indirect steam cycle (ID-SC), an indirect gas turbine cycle (ID-GT), an indirect gas turbine combined cycle (ID-CCGT) and a direct gas turbine cycle (D-GT) has been chosen as the systems to be compared. The followings are chosen items for comparison analysis: a) Plant efficiency; b) Amount of commodities (which can estimate capital cost); c) Flexibility of reactor core design; d) Technical issues to be developed; e) Compatibility with hydrogen production system, etc. And for the second step, as the system optimization study among the selected system, sensitiveness to plant efficiency by changing the inlet and the outlet temperature of reactor core has been investigated from an economical and plant efficiency point of view.


Author(s):  
Feng Gou ◽  
Fubing Chen ◽  
Yujie Dong

After the full power operation of the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10), several safety demonstration tests, representing the anticipated transient without scram (ATWS) conditions, were successfully performed on this reactor. Among these tests, two reactivity insertion ATWS tests were conducted by withdrawing a single control rod without reactor scram at 30% rated power. In the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, these two tests have been reanalyzed using the THERMIX code, and the code itself was strictly checked through the test data. According to the previous code benchmark activities utilizing the HTR-10 tests, the temperature coefficient of reactivity (TCR), the residual heat level (RHL) and the xenon poisoning effect (XPE) could be considered the most important influencing factors of the THERMIX simulation accuracy for the core dynamics. In this study, sensitivity analyses are performed on the basis of the assumed variations of TCR, RHL and XPE. The impacts of these concerned parameters on the reactor power transient are qualitatively identified.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuki Honda ◽  
Nozomu Fujimoto ◽  
Hiroaki Sawahata ◽  
Shoji Takada ◽  
Kazuhiro Sawa

The high-temperature engineering test reactor (HTTR) is a block-type high-temperature gas-cooled reactor (HTGR), which was constructed in Japan. The operating data of HTTR with burn-up to about 370 EFPD (effective full-power days), which are very important for the development of HTGRs, have been collected in both zero-power and powered operations. In the aspects of code validation, the detailed prediction of temperature distribution in the core makes it difficult to validate the calculation code because of difficulty in measuring the core temperature directly in powered operation of the HTTR. In this study, the measured data of the control rod position, while keeping the temperature distribution in the core uniform at criticality in zero-power operation at the beginning of each operation cycle were compared with the calculated results by core physics design code of the HTTR. The measured data of the control rod position were modified based on the core temperature correlation. At the beginning of burn-up, the trends of burn-up characteristics are slightly different between experimental and calculation data. However, the calculated result shows less than 50 mm of small difference (total length of control rod is 4060 mm) to the measured one, which indicates that the calculated results appropriately reproduced burn-up characteristics, such as a decrease in uranium-235, accumulation in plutonium, and decrease in burnable absorber.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Van Khanh Hoang

This paper presents the core design and performance characteristics of a 300 MWt small modular reactor (SMR) with fuel assemblies of the AP1000 reactor. Numerical calculations have been performed to evaluate a proper active core size and core loading pattern using the SRAC code system with the JENDL-4.0 data library and the CORBRA-EN code. The calculated temperature coefficients including fuel temperature, coolant temperature, and isothermal temperature coefficient provide adequate negative reactivity feedbacks. The thermal-hydraulic analysis reveals acceptable radial and axial fuel element temperature profiles with significant safety margin of fuel and clad surface temperature. A safety analysis using the CORBRA-EN code shows that the core will remain covered during the entire transient procedure of the fast transient of remarkably increasing power that would be caused by the ejection of control rod. The analysis results indicate that the core with a cycle length of 2.22 years is achievable while satisfying the operation and safety-related design criteria with sufficient margins.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuki Honda ◽  
Nozomu Fujimoto ◽  
Hiroaki Sawahata ◽  
Shoji Takada ◽  
Kazuhiro Sawa

The high-temperature engineering test reactor (HTTR) is a block-type high-temperature gas-cooled reactor (HTGR). There are 32 control rods (16 pairs) in the HTTR. Six of the pairs of control rods are located in a core region and the remainder are located in a reflector region surrounding the core. Inserting all control rods simultaneously at the reactor scram in a full-power operation presents difficulty in maintaining the integrity of the metallic sleeve of the control rod because the core temperature of the HTTR is too high. Therefore, a two-step control rod insertion method is adopted for the reactor scram. The calculated control rod worth at the first step showed a larger underestimation than the measured value in the second step, although the calculated results of the excess reactivity tests showed good agreement with the measured result in the criticality tests of the HTTR. It is concluded that a cell model for the control rod guide block with the control rod in the reflector region is not suitable. In addition, in the core calculation, the macroscopic cross section of a homogenized region of the control rod guide block with the control rod is used. Therefore, it would be one of the reasons that the neutron flux distribution around the control rod in control rod guide block in the reflector region cannot be simulated accurately by the conventional cell model. In the conventional cell model, the control rod guide block is surrounded by the fuel blocks only, although the control rods in the reflector region are surrounded by both the fuel blocks and the reflector blocks. The difference of the neutron flux distribution causes the large difference of a homogenized macroscopic cross-section set of the control rod guide block with the control rod. Therefore, in this paper, the cell model is revised for the control rod guide block with the control rod in the reflector region to account for the actual configuration around the control rod guide block in the reflector region. The calculated control rod worth at the first step using the improved cell model shows better results than the previous one.


2016 ◽  
Vol 19 (2) ◽  
pp. 75
Author(s):  
Syarip, Khoirul Anam, Dwi Priyantoro

ANALISISPENGATURAN POSISI CONTROL RODS PADA KONSEP REAKTOR DAYA EKSPERIMENTAL INDONESIA PASCA REACTOR SCRAM POST REACTOR SCRAM CONTROL RODS POSITION ADJUSTMENT ANALYSIS FOR THE INDONESIAN EXPERIMENTAL POWER REACTOR CONCEPT. ABSTRAK ANALISIS PENGATURAN POSISI CONTROL RODS PADA KONSEP REAKTOR DAYA EKSPERIMENTAL INDONESIA PASCA REACTOR SCRAM. Telah dilakukan analisis simulasi pengaturan posisi batang-batang kendali untuk melanjutkan operasi reaktor daya eksperimental (RDE) paska scram setelah beroperasi pada periode waktu tertentu. Pengendalian reaktivitas pada reaktor RDE yang akan dibangun di Indonesia dengan rujukan high temperature gas reactor (HTR) 10 MWt, dilakukan dengan 10  pasang batang-batang kendali atau control rod (CR). Apabila terrjadi kondisi abnormal maka CR secara otomatis akan jatuh tersisip ke dalam reflektor  reaktor sehingga reaktor scram dan berada pada kondisi subkritis. Untuk melanjutkan operasi reaktor pasca scram diperlukan analisis terkait pengaruh reaktivitas negatif dari Xenon dan suhu. Pada makalah ini disajikan hasil simulasi yang dilakukan untuk penentuan posisi CR paling optimum untuk melanjutkan operasi reaktor, menggunakan simulator PCTRAN-HTR. Simulasi dilakukan pada variasi 70%, 85% dan 100% dari tingkat daya penuh dan dengan variasi waktu operasi 50 s, 10.000 s, dan 20.000 s di mana setelah reaktor beroperasi pada tingkat-tingkat daya dan waktu operasi tersebut reaktor mengalami scram. Untuk melanjutkan operasi lagi maka CR harus dinaikkan lagi dan diatur ke posisi tertentu sampai   reaktor mencapai kondisi kritis lagi pada tingkat daya nominal tersebut. Hasil yang telah diperoleh menunjukkan bahwa dengan posisi CR naik 52 % sudah bisa menghasilkan kondisi kritis dan mampu mengatasi reaktivitas negatif peracunan xenon maupun suhu. Kata kunci: RDE, HTR, operasi reaktor, batang kendali, reaktivitas, scram ABSTRACT POST REACTOR SCRAM CONTROL RODS POSITION ADJUSTMENT ANALYSIS FOR THE INDONESIAN EXPERIMENTAL POWER REACTOR CONCEPT. Analytical study using PC-based simulator has been carried out on control rods position adjustment of the Indonesian experimental power reactor concept or reaktor daya ekperimental (RDE) in a post reactor scram to continue operation after a certain operation period. Reactivity control of the RDE uses 10 pairs of control rods (CRs), which is based on that applied in the high temperature gas reactor (HTR) 10 MW(t). If an abnormal operating condition occurs, these control rods automatically dropped to the reflector that bring the reactor into a scram and subcritical condition. To continue reactor operation after a period of time, the CRs should be withdrawn to achieve recriticality. Prior to any CRs withdrawal, an analysis of negative reactivity effects of Xenon (poissoning) and fuel temperature coefficient should be done. Simulations using PCTRAN-HTR simulator to determine the optimum CRs positions in achieving reactor criticality for continuation of reactor operation is presented in this paper. The simulations were conducted by varying the reactor power levels at 70%, 85% and 100% of full power, respectively. The reactor operation time was varied at 50s, 10000s, and 20000 s prior to the reactor scram. Adjustment of CRs position should be done to continue reactor operation at those nominal power levels by withdrawing the CRs to the proper positions. The simulation results show that recriticality can be achieverd by whitdrawing the CRs 52% of farther and the negative reactivity from xenon poisoning and temperature could be overcome. Keywords : RDE, HTR, reactor operation, control rod, reactivity, scram.


2020 ◽  
Vol 14 (1) ◽  
pp. 6362-6379 ◽  
Author(s):  
Mohd Sabri Minhat ◽  
Nurul Adilla Mohd Subha ◽  
Fazilah Hassan ◽  
Norjulia Mohamad Nordin

The 1 MWth TRIGA PUSPATI Reactor known as RTP undergoes more than 37 years of operation in Malaysia. The current core power control utilized Feedback Control Algorithm (FCA) and a conventional Control Rod Selection Algorithm (CRSA). However, the current power tracking performance suffers and increase the workload on Control Rod Drive Mechanism (CRDM) if the range between minimum and maximum rod worth value for each control rod has a significant difference. Thus, it is requiring much time to keep the core power stable at the power demand value within the acceptable error bands for the safety requirement of the RTP. In conventional CRSA, regardless of the rod worth value, the lowest position of the control rod is selected for up-movement to regulate the reactor power with 2% chattering error. To improve this method, a new CRSA is introduced named Single Control Absorbing Rod (SCAR). In SCAR, only one rod with highest reactivity worth value will be selected for coast tuning during transient and the lowest reactivity worth value will be selected for fine-tuning rod movement during steady-state. The simulation model of the reactor core is represented based on point kinetics model, thermal-hydraulic models and reactivity model. The conventional CRSA model included with control rod position dynamic model and actual reactivity worth curve data from RTP. The FCA controller is designed based on Proportional-Integral (PI) controller using MATLAB Simulink simulation. The core power control system is represented by the integration of a reactor core model, CRSA model and FCA controller. To manifest the effectiveness of the proposed SCAR algorithm, the results are compared to the conventional CRSA in both simulation and experimentation. Overall, the results shows that the SCAR algorithm offers generally better results than the conventional CRSA with the reduction in rising time up to 44%, workload up to 35%, settling time up to 26% and chattering error up to 18% of the nominal value.


Author(s):  
X. L. Yan ◽  
L. M. Lidsky

A control system design for the Modular High Temperature Gas-Cooled Reactor Gas Turbine power plant (MGR-GT) is presented. The control system is designed to provide full-scale automated control functions for power output regulation and plant protection in accordance with utility requirements for modular nuclear power plants. Control of the plant power output is based on a unique integration of inventory control and bypass control, which not only enables required load following capabilities but also offers 45% electric generating efficiency over the power ranges from 100% to 50% of the rated level. The reactor power is controlled based on the strategy of maintaining constant core outlet temperature. This approach minimizes the occurrence of thermal transients and temperature redistribution in the core during reactor power changes. In addition, the control system also provides emergency protective control to protect the plant components and to mitigate the likelihood of bounding safety events in case of severe accidents. The operation of the control system is automated by controllers implemented based on the state-space feedback control methodology. A spectrum of transients in both normal and far-off normal conditions has been simulated to evaluate the operability of the plant. The simulation results for a few selected events will be described. The design demonstrates that the MGR-GT is a highly efficient and robust controllable power plant.


Sign in / Sign up

Export Citation Format

Share Document