scholarly journals Heat Transfer Boundary Conditions in the RELAP5-3D Code

Author(s):  
Richard A. Riemke ◽  
Cliff B. Davis ◽  
Richard R. Schultz

The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

2012 ◽  
Vol 730-732 ◽  
pp. 841-846
Author(s):  
Noé Cheung ◽  
Leonardo L. Taconi ◽  
Amauri Garcia

For the correct simulation of solidification and temperature evolution in the continuous casting of steel, the determination of boundary conditions describing the heat-transfer phenomena through the strand surface, in each cooling zone of the casting machine, is extremely important. These boundary conditions are usually expressed as heat fluxes or heat transfer coefficients. In the present study, the surface temperature of the steel billet was experimentally determined in a steelmaking plant by infrared pyrometers positioned along the secondary cooling zone during real operation of a continuous casting machine. These data were used as input information into an Inverse Heat Transfer Code, implemented in this work, in order to permit the heat transfer coefficients of each spray cooling zone to be determined. The resulting simulations of temperature evolution during continuous casting have shown that the solidification was not complete at the unbending point and that there was a risk of breakout at the mold exit under the adopted operating conditions.


Author(s):  
H Long ◽  
A A Lord ◽  
D T Gethin ◽  
B J Roylance

This paper investigates the effects of gear geometry, rotational speed and applied load, as well as lubrication conditions on surface temperature of high-speed gear teeth. The analytical approach and procedure for estimating frictional heat flux and heat transfer coefficients of gear teeth in high-speed operational conditions was developed and accounts for the effect of oil mist as a cooling medium. Numerical simulations of tooth temperature based on finite element analysis were established to investigate temperature distributions and variations over a range of applied load and rotational speed, which compared well with experimental measurements. A sensitivity analysis of surface temperature to gear configuration, frictional heat flux, heat transfer coefficients, and oil and ambient temperatures was conducted and the major parameters influencing surface temperature were evaluated.


Author(s):  
Mohammad Taslim ◽  
Joseph S. Halabi

Local and average heat transfer coefficients and friction factors were measured in a test section simulating the trailing edge cooling cavity of a turbine airfoil. The test rig with a trapezoidal cross sectional area was rib-roughened on two opposite sides of the trapezoid (airfoil pressure and suction sides) with tapered ribs to conform to the cooling cavity shape and had a 22-degree tilt in the flow direction upstream of the ribs that affected the heat transfer coefficients on the two rib-roughened surfaces. The radial cooling flow traveled from the airfoil root to the tip while exiting through 22 cooling holes along the airfoil trailing edge. Two rib geometries, with and without the presence of the trailing-edge cooling holes, were examined. The numerical model contained the entire trailing-edge channel, ribs and trailing-edge cooling holes to simulate exactly the tested geometry. A pressure-correction based, multi-block, multi-grid, unstructured/adaptive commercial software was used in this investigation. Realizable k–ε turbulence model in conjunction with enhanced wall treatment approach for the near wall regions, was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. Comparisons are made between the experimental and numerical results.


Author(s):  
Aneesh Sridhar Vadvadgi ◽  
Savas Yavuzkurt

The present study deals with the numerical modeling of the turbulent flow in a rotor-stator cavity with or without imposed through flow with heat transfer. The commercial finite volume based solver, ANSYS/FLUENT is used to numerically simulate the problem. A conjugate heat transfer approach is used. The study specifically deals with the calculation of the heat transfer coefficients and the temperatures at the disk surfaces. Results are compared with data where available. Conventional approaches which use boundary conditions such as constant wall temperature or constant heat flux in order to calculate the heat transfer coefficients which later are used to calculate disk temperatures can introduce significant errors in the results. The conjugate heat transfer approach can resolve this to a good extent. It includes the effect of variable surface temperature on heat transfer coefficients. Further it is easier to specify more realistic boundary conditions in a conjugate approach since solid and the flow heat transfer problems are solved simultaneously. However this approach incurs a higher computational cost. In this study, the configuration chosen is a simple rotor and stator system with a stationary and heated stator and a rotor. The aspect ratio is kept small (around 0.1). The flow and heat transfer characteristics are obtained for a rotational Reynolds number of around 106. The simulation is performed using the Reynolds Stress Model (RSM). The computational model is first validated against experimental data available in the literature. Studies have been carried out to calculate the disk temperatures using conventional non-conjugate and full conjugate approaches. It has been found that the difference between the disk temperatures for conjugate and non-conjugate computations is 5 K for the low temperature and 30 K for the high temperature boundary conditions. These represent differences of 1% and 2% from the respective stator surface temperatures. Even at low temperatures, the Nusselt numbers at the disk surface show a difference of 5% between the conjugate and non-conjugate computations, and far higher at higher temperatures.


Author(s):  
Pei-Xue Jiang ◽  
Yi-Jun Xu ◽  
Run-Fu Shi ◽  
S. He

Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube with a diameter of 0.948 mm was investigated experimentally and numerically. The local heat transfer coefficients, bulk fluid temperatures and wall temperatures were measured and presented. The effects of inlet fluid temperature, fluid pressure, mass flow rate, heat flux and wall thickness on the convection heat transfer in the mini tube were investigated. The experimental results were compared with calculated results using well-known correlations and numerical simulations. The results showed that the variable thermophysical properties of supercritical CO2 significantly influenced the convection heat transfer in the vertical mini tube and that for the studied conditions the influence of the wall thickness on the convection heat transfer in the mini tube was not great. For bulk fluid temperatures higher than the pseudo-critical temperature, the simulation results and the correlation results for the convection heat transfer coefficients in the mini tube corresponded well to the experimentally measured results.


2008 ◽  
Vol 07 (06) ◽  
pp. 325-331 ◽  
Author(s):  
S. M. SOHEL MURSHED ◽  
KAI CHOONG LEONG ◽  
CHUN YANG ◽  
NAM-TRUNG NGUYEN

This paper reports an experimental investigation into force convective heat transfer of nanofluids flowing through a cylindrical minichannel under laminar flow and constant wall heat flux conditions. Sample nanofluids were prepared by dispersing different volumetric concentrations (0.2–0.8%) of nanoparticles in deionized water. The results showed that both the convective heat transfer coefficient and the Nusselt number of the nanofluid increase considerably with the nanoparticle volume fraction as well as the Reynolds number. Along with the enhanced thermal conductivity of nanofluids, the migration, interactions, and Brownian motion of nanoparticles and the resulting disturbance of the boundary layer are responsible for the observed enhancement of heat transfer coefficients of nanofluids.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
HengLiang Zhang ◽  
Shi Liu ◽  
Danmei Xie ◽  
Yangheng Xiong ◽  
Yanzhi Yu ◽  
...  

Thermal stress failure caused by alternating operational loads is the one of important damage mechanisms in the nuclear power plants. To evaluate the thermal stress responses, the Green’s function approach has been generally used. In this paper, a method to consider varying heat transfer coefficients when using the Green’s function method is proposed by using artificial parameter method and superposition principle. Time dependent heat transfer coefficient has been treated by using a modified fluid temperature and a constant heat transfer coefficient. Three-dimensional temperature and stress analyses reflecting entire geometry and heat transfer properties are required to obtain accurate results. An efficient and accurate method is confirmed by comparing its result with corresponding 3D finite element analysis results for a reactor pressure vessel (RPV). From the results, it is found that the temperature dependent material properties and varying heat transfer coefficients can significantly affect the peak stresses and the proposed method can reduce computational efforts with satisfactory accuracy.


Sign in / Sign up

Export Citation Format

Share Document