Calculation of Disk Temperatures in Gas Turbine Rotor-Stator Cavities Using Conjugate Heat Transfer

Author(s):  
Aneesh Sridhar Vadvadgi ◽  
Savas Yavuzkurt

The present study deals with the numerical modeling of the turbulent flow in a rotor-stator cavity with or without imposed through flow with heat transfer. The commercial finite volume based solver, ANSYS/FLUENT is used to numerically simulate the problem. A conjugate heat transfer approach is used. The study specifically deals with the calculation of the heat transfer coefficients and the temperatures at the disk surfaces. Results are compared with data where available. Conventional approaches which use boundary conditions such as constant wall temperature or constant heat flux in order to calculate the heat transfer coefficients which later are used to calculate disk temperatures can introduce significant errors in the results. The conjugate heat transfer approach can resolve this to a good extent. It includes the effect of variable surface temperature on heat transfer coefficients. Further it is easier to specify more realistic boundary conditions in a conjugate approach since solid and the flow heat transfer problems are solved simultaneously. However this approach incurs a higher computational cost. In this study, the configuration chosen is a simple rotor and stator system with a stationary and heated stator and a rotor. The aspect ratio is kept small (around 0.1). The flow and heat transfer characteristics are obtained for a rotational Reynolds number of around 106. The simulation is performed using the Reynolds Stress Model (RSM). The computational model is first validated against experimental data available in the literature. Studies have been carried out to calculate the disk temperatures using conventional non-conjugate and full conjugate approaches. It has been found that the difference between the disk temperatures for conjugate and non-conjugate computations is 5 K for the low temperature and 30 K for the high temperature boundary conditions. These represent differences of 1% and 2% from the respective stator surface temperatures. Even at low temperatures, the Nusselt numbers at the disk surface show a difference of 5% between the conjugate and non-conjugate computations, and far higher at higher temperatures.

Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Typical turbomachinery flows are too complex to be predicted by analytical solutions alone. Therefore numerous correlations and test data are used in conjunction with numerical tools in order to design thermally critical components. This approach can be problematic because these correlations and data are not fully independent of the boundary conditions applied. The heat transfer coefficients obtained are not only dependent on the aerodynamics of the flow but also on the thermal boundary layer created along the surface. The adiabatic heat transfer coefficient is the only one which is independent of the thermal boundary conditions, as long as the energy equation can be considered linear with respect to the temperature. However, a proper prediction of the surface temperature cannot be obtained with the adiabatic heat transfer coefficient alone. This paper first reviews the concept of adiabatic heat transfer coefficient and its application to turbomachinery flows. Later, a concept is introduced to allow interchanging between different definitions of heat transfer coefficient and boundary conditions, i.e. constant heat flux or constant wall temperature. Finally, a typical configuration for measuring the adiabatic heat transfer coefficient on a turbine blade and the conversion to other definitions of heat transfer coefficient is presented and evaluated. It is shown that with the technique presented here even small deficiencies of some experiments can be compensated for.


Author(s):  
Dominik Born ◽  
Kurt Heiniger ◽  
Giorgio Zanazzi ◽  
Thomas Mokulys ◽  
Patrick Grossmann ◽  
...  

Cyclic lifetime assessment of steam turbine components has become increasingly important for several reasons. In the last years and decades the nominal steam temperatures and pressures were further increased to improve cycle efficiency. In addition, the market constantly demands increased flexibility and reliability for given lifetime exploiting the limits of the existing materials. A number of components in a steam turbine are critical in the focus of lifetime predictions such as the rotor and front stage blades, the inner casing and the area of labyrinth seals connected to the life steam. For this reason, it becomes extremely important to rely on accurate predictions of local temperatures and heat-transfer-coefficients of components in the steam path. The content of this paper aims on the validation of the numerical tools based on CHT (conjugate heat transfer) approach against experimental data of a labyrinth seal regarding discharge coefficients and measured heat transfer coefficients. Furthermore, a real steam turbine application has been optimized in design and operation to improve lifetime. The improved prediction of temperature and heat transfer allowed novel designs of labyrinth seals of a single flow high-pressure turbine and a combined intermediate and low-pressure turbine, which helped to strongly increase the component lifetime of a steam turbine rotor by more than 100%.


Author(s):  
Sushant Dhiman ◽  
Savas Yavuzkurt

An iterative conjugate heat transfer technique has been developed to predict the temperatures on film cooled surfaces such as flat plates and turbine blades. Conventional approaches using a constant wall temperature to calculate heat transfer coefficient and applying it to solid as a boundary condition can result in errors around 14% in uncooled blade temperatures. This indicates a need for conjugate heat transfer calculation techniques. However, full conjugate calculations also suffer from inability to correctly predict heat transfer coefficients in the near field of film cooling holes and require high computational cost making them impractical for component design in industrial applications. Iterative conjugate heat transfer (ICHT) analysis is a compromise between these two techniques where the external flow convection and internal blade conduction are loosely coupled. The solution obtained from solving one domain is used as boundary condition for the other. This process is iterated until convergence. Flow and heat transfer over a film cooled blade is not solved directly and instead convective heat transfer coefficients resulting from external convection on a similar blade without film cooling and under the same flow conditions are corrected by use of experimental data to incorporate the effect of film cooling in the heat transfer coefficients. The effect of conjugate heat transfer is taken into account by using this iterative technique. Unlike full conjugate heat transfer (CHT) the ICHT analysis doesn’t require solving a large number of linear algebraic equations at once. It uses two separate meshes for external convection and blade conduction and thus problem can be solved in lesser time using less computational resources. A demonstration of this technique using a commercial CFD solver FLUENT is presented for simulations of film cooling on flat plates. Results are presented in form of film cooling heat transfer coefficients and surface temperature distribution which are compared with results obtained from conventional approach. For uncooled surfaces, the deviations were as high as 3.5% between conjugate and conventional technique results for the wall temperature. For film cooling simulations on a flat plate using the ICHT approach showed deviations up to 10% in surface temperature compared to constant wall temperature technique for a high temperature difference case and 3% for a low temperature difference case, since surface temperature is not constant over the surface when conjugate heat transfer is considered. Results show that conjugate heat transfer effect is significant for film cooling flows involving high temperature differences for the current blade materials and application of film cooling correction obtained from experimental data is very useful in obtaining realistic blade temperatures.


Author(s):  
Richard A. Riemke ◽  
Cliff B. Davis ◽  
Richard R. Schultz

The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.


Author(s):  
Mohammad Taslim ◽  
Joseph S. Halabi

Local and average heat transfer coefficients and friction factors were measured in a test section simulating the trailing edge cooling cavity of a turbine airfoil. The test rig with a trapezoidal cross sectional area was rib-roughened on two opposite sides of the trapezoid (airfoil pressure and suction sides) with tapered ribs to conform to the cooling cavity shape and had a 22-degree tilt in the flow direction upstream of the ribs that affected the heat transfer coefficients on the two rib-roughened surfaces. The radial cooling flow traveled from the airfoil root to the tip while exiting through 22 cooling holes along the airfoil trailing edge. Two rib geometries, with and without the presence of the trailing-edge cooling holes, were examined. The numerical model contained the entire trailing-edge channel, ribs and trailing-edge cooling holes to simulate exactly the tested geometry. A pressure-correction based, multi-block, multi-grid, unstructured/adaptive commercial software was used in this investigation. Realizable k–ε turbulence model in conjunction with enhanced wall treatment approach for the near wall regions, was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. Comparisons are made between the experimental and numerical results.


Author(s):  
Reby Roy ◽  
B. V. S. S. S. Prasad ◽  
S. Srinivasa Murthy

The conjugate heat transfer in a stationary cylindrical cavity with a rotating disk and fluid through-flow is analysed at various rotational speeds ranging from 10000 to 50000 rpm by using a finite volume commercial code. The numerical model and code are validated for a problem, which involves rotation and fluid through-flow. A reduction of the thermal boundary layer thickness and increase in the heat transfer coefficients are observed with increase in the rotational speed. Marked differences are noticed between the Nusselt numbers obtained from the conjugate and constant temperature analyses.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
M. E. Taslim ◽  
J. S. Halabi

Local and average heat transfer coefficients and friction factors were measured in a test section simulating the trailing-edge cooling cavity of a turbine airfoil. The test rig with a trapezoidal cross-sectional area was rib-roughened on two opposite sides of the trapezoid (airfoil pressure and suction sides) with tapered ribs to conform to the cooling cavity shape and had a 22-degree tilt in the flow direction upstream of the ribs that affected the heat transfer coefficients on the two rib-roughened surfaces. The radial cooling flow traveled from the airfoil root to the tip while exiting through 22 cooling holes along the airfoil trailing-edge. Two rib geometries, with and without the presence of the trailing-edge cooling holes, were examined. The numerical model contained the entire trailing-edge channel, ribs, and trailing-edge cooling holes to simulate exactly the tested geometry. A pressure-correction based, multiblock, multigrid, unstructured/adaptive commercial software was used in this investigation. Realizablek-εturbulence model in conjunction with enhanced wall treatment approach for the near wall regions was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. Comparisons are made between the experimental and numerical results.


Author(s):  
Y. S. Muzychka ◽  
M. Ghobadi

Heat transfer in micro and mini-scale ducts and channels is considered. In particular, issues of thermal performance are considered in systems with constant wall temperature at low to moderate Reynolds numbers or small dimensional scales which lead to conditions characteristic of thermally fully developed flows or within the transition region leading to thermally fully developed flows. An analysis of two approaches to representing experimental data is given. One using the traditional Nusselt number and another using the dimensionless mean wall flux. Both approaches offer a number of advantages and disadvantages. In particular, it is shown that while good data can be obtained which agree with predicted heat transfer rates, the same data can be problematic if one desires a Nusselt number. Other issues such as boundary conditions pertaining to measuring thermally developing and fully developed flow Nusselt numbers are also discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document