Numerical Simulation of Upward Two-Phase Flow in Narrow Channel Between Two Flat Plates With Bilateral Heating

Author(s):  
Lei Li ◽  
Zhijian Zhang ◽  
Jiange Liu

The convection heat transfer characteristic in narrow channel is superior. Therefore, narrow channels are suitable for being manufactured into compact heat transfer components with high heat transfer performance. This new technology of heat transfer enhancement with no source is widely applied to various fields such as microelectronic heat sink, cryogenic industry, chemical industry, aeronautic & astronautic industry and nuclear engineering. In integrated reactor, the coolant channels between the plate fuels are narrow channels. As to the investigation of two-phase flow and heat transfer in narrow channels, reports are focused on experimental research with low pressure, at home and abroad, but reports on numerical simulation research are relatively small. Based on separated flow, a theoretical two-fluid model predicting for upward flow in a rectangular narrow channel with bilateral heating has been developed in this paper. The theoretical model is based on fundamental conservation principles: the mass, momentum and energy conservation equations of liquid films and the momentum conservation equation of vapor core. The model assumed that liquid film covers the surface of the channel while the vapor with entrained droplets flows in the central core. And there exists the mass transfer between the liquid droplets in the vapor core and the liquid films. Through numerically solving these equations, liquid film thickness, radial velocity and temperature distribution in liquid films and heat transfer coefficient are obtained. The calculated results shows that the width of the narrow channel, heat pattern, heat flux have great influences on heat transfer coefficient and the thickness of liquid film. The heat transfer coefficient will increase with the decrease of the channel width. That is, the heat transfer may be enhanced with small rectangular narrow channel. But when the channel width is less than a certain value, the model may not be proper anymore. So the further research should be necessary. As the applications of the present model, the critical heat flux and critical quality are calculated.

Author(s):  
Chong Chen ◽  
Puzhen Gao

In view of the practical significance of a correlation of heat transfer coefficient in the aspect of such applications as engineering and predictive, some efforts towards correlating flow boiling heat transfer correlation for vertical rectangular narrow channels have been made in this paper. Based on analyses of existing general correlations for flow boiling heat transfer, it is found that general correlations are not suitable to predict heat transfer coefficients in narrow channels. By considering the suppression factor S and two-phase pool boiling heat transfer coefficient hnb, introducing boiling number Bo and two-phase friction multiplier ϕtt2, the Chen correlation has been modified to be used for narrow channels. The flow boiling heat transfer was the function of boiling number Bo and two-phase friction multiplier ϕtt2, the coefficients have a regular change with the increase of boiling number Bo or two-phase friction multiplier ϕtt2. A comparison of the newly developed correlation with the existing data for narrow channels shows a satisfactory agreement. The heat transfer coefficient of the narrow channel was well predicted by the new correlation and the deviation within ±20%.


2001 ◽  
Author(s):  
S. I. Haider ◽  
Yogendra K. Joshi ◽  
Wataru Nakayama

Abstract The study presents a model for the two-phase flow and heat transfer in the closed loop, two-phase thermosyphon (CLTPT) involving co-current natural circulation. Most available models deal with two-phase thermosyphons with counter-current circulation within a closed, vertical, wickless heat pipe. The present research focuses on CLTPTs for electronics cooling that face more complex two-phase flow patterns than the vertical heat pipes, due to closed loop geometry and smaller tube size. The present model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser, and the falling tube. The homogeneous two-phase flow model is used to evaluate the friction pressure drop of the two-phase flow imposed by the available gravitational head through the loop. The saturation temperature dictates both the chip temperature and the condenser heat rejection capacity. Thermodynamic constraints are applied to model the saturation temperature, which also depends upon the local heat transfer coefficient and the two-phase flow patterns inside the condenser. The boiling characteristics of the enhanced structure are used to predict the chip temperature. The model is compared with experimental data for dielectric working fluid PF-5060 and is in general agreement with the observed trends. The degradation of condensation heat transfer coefficient due to diminished vapor convective effects, and the presence of subcooled liquid in the condenser are expected to cause higher thermal resistance at low heat fluxes. The local condensation heat transfer coefficient is a major area of uncertainty.


1998 ◽  
Vol 120 (2) ◽  
pp. 485-491 ◽  
Author(s):  
T. S. Ravigururajan

Microchannel surfaces, often machined to 20 to 1000 μm in width and depth, are employed in high-heat-flux applications. However, a large number of variables, control the two-phase flow heat transfer coefficient. The pressure, the surface heat flux, and the mass flux significantly affect the thermal transport. Experiments were conducted on a setup that was built for testing microchannel heat exchanges. The parameters considered in the study are power input: 20 to 300 W, volume flow rate: 35 to 300 ml/min, quality: 0 to 0.5, inlet subcooling: 5 to 15°C. The results indicate that the heat transfer coefficient and pressure drop are functions of the flow quality, the mass flux, and, of course, the heat flux and the related surface superheat. The heat transfer coefficient decreases from a value of 12,000 W/m2-K to 9000, W/m2-K at 80°C, when the wall superheat is increased from 10 to 80°C. The coefficient decreases by 30 percent when the exit vapor quality is increased from 0.01 to 0.65.


Author(s):  
Nishant Tiwari ◽  
Manoj Kumar Moharana

Flow boiling in microchannel heat sink offers an effective cooling solution for high power density micro devices. A three-dimensional numerical study based on volume of fraction model (VOF) coupled with evaporation condensation model accounting for the liquid-vapor phase change is undertaken to recreate vapor bubble formation in saturated flow boiling in wavy microchannel. Constant wall heat flux imposed at the bottom surface of the substrate while other faces are insulated. To understand the conjugate effects, simulations has been carried out for substrate thickness to channel depth ratio (δsf ∼ 1–5), substrate wall to fluid thermal conductivity ratio (ksf ∼ 22–300) and waviness (γ ∼ 0.008–0.04). Bubble nucleation, growth, and departure of bubble plays a significant role in heat transfer and pressure drop characteristics in two-phase flow in wavy microchannel. The coolant (water) temperature at the inlet is taken to be 373 K while flow was at atmospheric pressure. This makes shorter waiting period of bubble nucleation, and the number density of bubbles on the solid surface increases. This results in enhancement of the boiling effect, and thus with the presence of bubbles, the mixing of laminar boundary layers improves and enhances the overall heat transfer coefficient. Channel amplitude play an important factor that can suitably reduce the friction factor and enhances the heat transfer coefficient.


Author(s):  
Swanand M. Bhagwat ◽  
Mehmet Mollamahmutoglu ◽  
Afshin J. Ghajar

The non-boiling gas-liquid two phase flow is pertinent to industrial applications like the reduction of paraffin wax depositions in petroleum transport lines, air lift systems and the chemical processes such as ethanol-water fractionation seeking enhanced heat and mass transfer. The non-boiling two phase heat transfer mechanism in horizontal and vertical orientations has been investigated by many researchers. However, till date very little experimental work and investigation has been performed for vertical downward flow. In order to contribute more to this research and have a better understanding of the non-boiling two phase heat transfer phenomenon for this pipe orientation, experimental investigation is undertaken for a vertical downward oriented 0.01252 m I.D. schedule 10 S stainless steel pipe using air-water as fluid combination. The influence of different flow patterns on the two phase convective heat transfer coefficient is studied using experimental measurements of 165 data points for bubbly, slug, froth, falling film and annular flow patterns spanned over the entire range of the void fraction. In general the two phase heat transfer coefficients are found to be consistently higher than that of the single phase flow. This tendency is observed to increase with increase in the gas flow rate as the flow regime migrates from bubbly to the annular flow. The concept of Reynolds analogy as implemented by Tang and Ghajar [1] for horizontal and vertical upward flow is analyzed against the vertical downward flow data collected in the present study. Due to lack of correlations available for predicting the two phase heat transfer coefficient in vertical downward orientation it was decided to perform the quantitative analysis of the seventeen two phase heat transfer correlations available for vertical upward flow. This analysis is concluded by the recommendation of the top performing correlations in the literature for each flow pattern. Based on the pressure drop data and using Reynolds analogy, a simple equation is proposed to correlate the two phase heat transfer coefficient with the single phase heat transfer coefficient.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012110
Author(s):  
L Cattani ◽  
F Bozzoli ◽  
V Ayel ◽  
C Romestant ◽  
Y Bertin

Abstract The aim of this work is to estimate the local heat flux and heat transfer coefficient for the case of evaporation of thin liquid film deposited on capillary heated channel: it plays a fundamental role in the two-phase heat transfer processes inside mini-channels. In the present analysis it is investigated a semi-infinite slug flow (one liquid slug followed by one single vapour bubble) in a heated capillary copper tube. The estimation procedure here adopted is based on the solution of the inverse heat conduction problem within the wall domain adopting, as input data, the temperature field on the external tube wall acquired by means of infrared thermography.


Sign in / Sign up

Export Citation Format

Share Document