High-Cycle Thermal Fatigue in Mixing Tees: New Large-Eddy Simulations Validated Against New Data Obtained by PIV in the Vattenfall Experiment

Author(s):  
Ylva Odemark ◽  
Torbjo¨rn M. Green ◽  
Kristian Angele ◽  
Johan Westin ◽  
Farid Alavyoon ◽  
...  

New data was obtained for a previously studied T-junction experimental setup [1] for a range of flow ratios between hot and cold flows in order to validate new Large Eddy Simulations (LES). The instantaneous velocity field downstream of the T-junction was measured with two-component Particle Image Velocimetry (PIV) in several horizontal and vertical planes at the centre line downstream of the T-junction. The generated PIV database enables a thorough validation of CFD turbulence statistics. The turbulence statistics are shown to be well predicted despite the fact that the mesh in the LES is rather coarse. By usage of time resolved PIV the temporal evolution of the predominant low frequent large-scale structures, responsible for much of the mixing and the high amplitude temperature fluctuations on the walls, were captured. Those structures are, however, weaker in LES than in PIV, being in line with the fact that the wake region behind the penetrating vertical hot jet is underpredicted in LES. Tests regarding the influence of the LES-results to the shape of the inlet boundary conditions (developed or flat symmetric mean-velocity profiles) were carried out and the sensitivity in the results was shown to be small. Furthermore, the results show good agreement with the experimental data independent of the flow ratio between the hot and the cold flows.

1992 ◽  
Vol 242 ◽  
pp. 51-78 ◽  
Author(s):  
P. J. Mason ◽  
D. J. Thomson

The ability of a large-eddy simulation to represent the large-scale motions in the interior of a turbulent flow is well established. However, concerns remain for the behaviour close to rigid surfaces where, with the exception of low-Reynolds-number flows, the large-eddy description must be matched to some description of the flow in which all except the larger-scale ‘inactive’ motions are averaged. The performance of large-eddy simulations in this near-surface region is investigated and it is pointed out that in previous simulations the mean velocity profile in the matching region has not had a logarithmic form. A number of new simulations are conducted with the Smagorinsky (1963) subgrid model. These also show departures from the logarithmic profile and suggest that it may not be possible to eliminate the error by adjustments of the subgrid lengthscale. An obvious defect of the Smagorinsky model is its failure to represent stochastic subgrid stress variations. It is shown that inclusion of these variations leads to a marked improvement in the near-wall flow simulation. The constant of proportionality between the magnitude of the fluctuations in stress and the Smagorinsky stresses has been empirically determined to give an accurate logarithmic flow profile. This value provides an energy backscatter rate slightly larger than the dissipation rate and equal to idealized theoretical predictions (Chasnov 1991).


2010 ◽  
Vol 661 ◽  
pp. 341-364 ◽  
Author(s):  
D. CHUNG ◽  
B. J. McKEON

We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers Reτ = 2K and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale–large-scale relative phase difference increases away from the wall, passing through π/2 in the overlap region of the mean velocity before approaching π further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Weijie Shao ◽  
Martin Agelin-Chaab

This paper reports an investigation of the effects of surface conditions of forward-facing steps (FFS) on turbulent flows. Three surface conditions including one smooth step and two rough step surfaces created using sandpapers were studied. A particle image velocimetry (PIV) technique was used to conduct velocity measurements at several locations downstream, and the statistics up to 60 step heights are reported. The step height was maintained at 6 mm, and three Reynolds numbers of Reh = 1600, 3200, and 4800, where Reh is based on the step height and freestream mean velocity, were studied. The results indicate that the reattachment length of a FFS increases with Reynolds number but decreases with increasing surface roughness. The proper orthogonal decomposition (POD) results showed the step roughness affects even the large-scale structures.


Author(s):  
Rémy Fransen ◽  
Laurence Vial ◽  
Laurent Y. M. Gicquel

Large Eddy Simulation (LES) of isothermal flow in stationary and wall-normal rotating blade internal cooling system is evaluated against experimental data. The studied case is a 3D one wall ribbed straight channel for which time resolved two-dimensional Particle Image Velocimetry (PIV) measurements have been performed at the Von Karman Institute (VKI) in a near gas turbine operating condition. Thanks to these experimental mean and time-resolved quantities, advanced numerical computations can be adequately evaluated. In this work LES results show that this high fidelity CFD model is able to reproduce the turbulence increase (decrease) around the rib in destabilizing (stabilizing) rotation of the ribbed channel. Such effects are not only captured at the mean level but also at the unsteady level as confirmed by the comparison of the LES large-scale coherent motions with these obtained by PIV.


2011 ◽  
Vol 671 ◽  
pp. 507-534 ◽  
Author(s):  
T. W. MATTNER

The stretched-vortex subgrid model is used to run large-eddy simulations of temporal mixing layers at various Reynolds and Schmidt numbers, with different initial and boundary conditions. A self-similar flow is obtained, during which the growth rate, mean velocity and Reynolds stresses are in accord with experimental results. However, predictions of the amount of mixed fluid, and of the variation in its composition across the layer, are excessive, especially at high Schmidt number. More favourable comparisons between experiment and simulation are obtained when the large-scale flow is quasi-two-dimensional; however, such states are not self-similar and not sustainable. Present model assumptions lead to predictions of the continued subgrid spectrum with a viscous cutoff that is dependent on grid resolution.


Author(s):  
J S Lee ◽  
R H Pletcher

Turbulent combined flow of forced and natural convection was investigated using large eddy simulations for horizontal and vertical channels with significant heat transfer. The walls were maintained at constant temperatures, one heated and the other cooled, at temperature ratios of 1.01, 1.99, and 3.00, respectively. Results showed that with increasing the Grashof number, large-scale turbulent motions emerged near the wall, resulting in significant changes in turbulent intensities for the horizontal channel flow case. Aiding and opposing flows, however, for the vertical channel, emerge near the heated and cooled walls, respectively, while the pressure gradient drives the mean flow upwards. Buoyancy effects on the mean velocity, temperature, and turbulent intensities were observed near the walls. In the aiding flow, the turbulent intensities and heat transfer were suppressed and the flow was relaminarized at large values of the Grash of number. In the opposing flow, however, turbulence was enhanced with increasing velocity fluctuations.


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2013 ◽  
Vol 13 (12) ◽  
pp. 31891-31932 ◽  
Author(s):  
R. Paoli ◽  
O. Thouron ◽  
J. Escobar ◽  
J. Picot ◽  
D. Cariolle

Abstract. Large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere (UTLS) are carried out and analyzed using the mesoscale atmospheric model Méso-NH. Different levels of turbulence are generated using a large-scale stochastic forcing technique that was especially devised to treat atmospheric stratified flows. The study focuses on the analysis of turbulence statistics, including mean quantities and energy spectra, as well as on a detailed description of flow topology. The impact of resolution is also discussed by decreasing the grid spacing to 2 m and increasing the number of grid points to 8×109. Because of atmospheric stratification, turbulence is substantially anisotropic, and large elongated structures form in the horizontal directions, in accordance with theoretical analysis and spectral direct numerical simulations of stably stratified flows. It is also found that the inertial range of horizontal kinetic energy spectrum, generally observed at scales larger than a few kilometers, is prolonged into the sub-kilometric range, down to the Ozmidov scales that obey isotropic Kolmorogov turbulence. The results are in line with observational analysis based on in situ measurements from existing campaigns.


Sign in / Sign up

Export Citation Format

Share Document