Prediction of Pressure Drop in Air-Water Two Phase Upflow Through Packed Bed

Author(s):  
Nan Zhang ◽  
Zhongning Sun

The resistance characteristics of air-water flow upward through packed bed have been studied experimentally. Experiments were conducted in transparent tube with 50mm inner diameter filled with glass spheres of which the diameters are 2, 5 and 8mm, respectively. Experimental results show that the pressure drop increases with the increasing of gas-liquid mass flow rate, and has a certain relationship with the flow pattern. The different particle diameter and porosity have great influence on pressure drop under the same flow condition. The applicability of several representative correlations for calculating the two-phase pressure drop and two new correlations were evaluated against 234 group experimental data. All compared correlations can be grouped into two, namely: (a) the separated flow model based on Lockhart & Matinelli method (b) the homogeneous model based on gas and liquid Reynolds number. The results show that: (1) the best agreement between measured and calculated values is obtained with the correlations based on separate flow model, but the predictive ability is reduced with the increasing of particle diameter. (2) the existing homogeneous model shows the considerable discrepancies with experiment values; however the modified homogeneous correlation by considering particle-to-column diameter ratio and porosity gives good agreement with experimental data.

Author(s):  
Wei Li ◽  
Kunrong Shen ◽  
Boren Zheng ◽  
Xiang Ma ◽  
S. A. Sherif ◽  
...  

Abstract Results are presented here from an experimental investigation on tube side two-phase characteristics that took place in four tested tubes—the 1EHT-1, 1EHT-2, 4LB, and smooth tubes. The equivalent outer diameter of the tube was 9.52 mm and the inner diameter was 8.32 mm. Condensation tests were conducted using refrigerant R410A at a saturation temperature of 318 K, over a mass flow range of 150–450 kg m−2 s−1, with inlet and outlet vapor qualities of 0.8 and 0.2, respectively. Evaporation tests were performed at a saturation temperature of 279 K, over a mass flow range of 150–380 kg m−2 s−1, with inlet and outlet vapor qualities of 0.2 and 0.8, respectively. Pressure drop data of the four tested tubes were collected to evaluate five identified prediction correlations based on the separated flow model and the homogeneous flow model. The separated flow approaches presented predictions with average MAEs of 24.9% and 16.4% for condensation and evaporation data, respectively, while the average MAEs of the homogeneous flow model were 31.6% and 43.4%, respectively. Almost all the identified correlations underestimated the frictional pressure drop of the 4LB tube with MAEs exceeding 30%. An earlier transition of different flow patterns was expected to occur in the EHT tubes while developing a new diabatic flow pattern map is needed for the 4LB tube. A new correlation was presented based on the two-phase multiplier Φ and the Martinelli parameter Xtt, which exhibited excellent predictive results for the experimental data.


1983 ◽  
Vol 48 (12) ◽  
pp. 3356-3369 ◽  
Author(s):  
Vladimír Jiřičný ◽  
Vladimír Staněk

The paper gives a review of present approaches to the problem of a single- and two-phase flow in a packed bed. A new definititon has been given of the flooding point, which, as far as the theory is concerned, rigorously defines critical values of the quantities in the flooding point. At the same time, the definition enables a unambiguous experimental determination of the flooding point from experimental dependence sof the hold-up or pressure drop on the flow rate of phases. Based on extensive experimental data three alternative forms have been proposed of the versatile correlation of liquid hold-up on the velocity of liquid at the zero velocity of gas. The correlations have been formulated on the principle of automodel properties and define the appropriate relationships in terms of normalized variables related to the newly defined flooding point. The dependences on the geometry parameters of the packing and physical properties of liquid appear in the versatile correlations only implicitly. A new possibility has been shown of inverse utilization of the versatile correlations for the determination of the critical values (the flooding point) from two independent measurements of liquid hold-up in a real apparatus.


2001 ◽  
Vol 66 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Snezana Serbula ◽  
Velizar Stankovic

The influence of an electrochemically generated gas phase on the hydrodynamic characteristics of a three-phase system has been examined. The two-phase fluid, (gas-liquid), in which the liquid phase is the continuous one, flows through a packed bed with glass spheres. The influence of the liquid velocity was examined, as well as the gas velocity and particle diameter on the pressure drop through the fixed bed. It was found that with increasing liquid velocity (wl = 0.0162-0.03 m/s), the relative pressure drop decreases through the fixed bed. With increasing current density, the pressure drop increases, since greater gas quantities stay behind in the fixed bed. Besides, it was found that with decreasing diameter of the glass particles, the relative pressure drop also decreases. The relationship betweeen the experimentally obtained friction factor and the Reynolds number was established.


Author(s):  
Shofique Uddin Ahmed ◽  
Rajesh Arora ◽  
Om Parkash

Over the decades conveying solid particles through pipelines is a prevalent usage for many industries like food industries, pharmaceutical, oil and gas-solid handling, power generations etc. In the present study, slurry flow through 54.9 mm diameter and 4 m long horizontal pipe with solid particle diameter 0.125 mm and specific gravity 2.47 has been numerically analysed using a granular version of Eulerian two-phase model and RNG K-  model. The solid particles are considered as mono-dispersed in the Eulerian model. These models are available in computational fluid dynamics (CFD) fluent software package. Non-uniform structured three-dimensional mesh with a refinement near wall boundary region has been selected for discretising the flow domain, and governing equations are solved using control volume finite difference method. Simulations are conducted at velocity varying from 1 m/s to 5 m/s and efflux concentration varying from 0.1 to 0.5 by volume. Different slurry flow parameters such as solid concentration distribution, velocity distribution, pressure drop etc. have been analysed from the simulated results. The simulated results of pressure drop are correlated with the experimental data available in previous literature and are found to be in excellent compliance with the experimental data.


1982 ◽  
Vol 47 (8) ◽  
pp. 2190-2200 ◽  
Author(s):  
Vladimír Jiřičný ◽  
Vladimír Staněk ◽  
Jiří Šmíd ◽  
Vladimír Jelínek

Results have been presented in the paper of the tests and calibration of a tensometric scale developed for weighing packed bed columns under operating conditions. The results have shown the tensometric method to be suitable weighing packed bed columns under the two-phase flow of gas and liquid in the dynamic state. Experimental results have been presented of the steady state liquid hold-up and gas pressure drop obtained by the developed tensometric method in an experimental column 190 mm in diameter. The experimental data have been compared with those of other authors obtained by different experimental techniques.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 510
Author(s):  
Yan Huang ◽  
Bifen Shu ◽  
Shengnan Zhou ◽  
Qi Shi

In this paper, two-phase pressure drop data were obtained for boiling in horizontal rectangular microchannels with a hydraulic diameter of 0.55 mm for R-134a over mass velocities from 790 to 1122, heat fluxes from 0 to 31.08 kW/m2 and vapor qualities from 0 to 0.25. The experimental results show that the Chisholm parameter in the separated flow model relies heavily on the vapor quality, especially in the low vapor quality region (from 0 to 0.1), where the two-phase flow pattern is mainly bubbly and slug flow. Then, the measured pressure drop data are compared with those from six separated flow models. Based on the comparison result, the superficial gas flux is introduced in this paper to consider the comprehensive influence of mass velocity and vapor quality on two-phase flow pressure drop, and a new equation for the Chisholm parameter in the separated flow model is proposed as a function of the superficial gas flux . The mean absolute error (MAE ) of the new flow correlation is 16.82%, which is significantly lower than the other correlations. Moreover, the applicability of the new expression has been verified by the experimental data in other literatures.


Author(s):  
F. I. Molina-Herrera ◽  
C. O. Castillo-Araiza ◽  
H. Jiménez-Islas ◽  
F. López-Isunza

Abstract This is a theoretical study about the influence of turbulence on momentum and heat transport in a packed-bed with low tube to particle diameter ratio. The hydrodynamics is given here by the time-averaged Navier-Stokes equations including Darcy and Forchheimer terms, plus a κ-ε two-equation model to describe a 2D pseudo-homogeneous medium. For comparison, an equivalent conventional flow model has also been tested. Both models are coupled to a heat transport equation and they are solved using spatial discretization with orthogonal collocation, while the time derivative is discretized by an implicit Euler scheme. We compared the prediction of radial and axial temperature observations from a packed-bed at particle Reynolds numbers (Rep) of 630, 767, and 1000. The conventional flow model uses effective heat transport parameters: wall heat transfer coefficient (hw) and thermal conductivity (keff), whereas the turbulent flow model includes a turbulent thermal conductivity (kt), estimating hw via least-squares with Levenberg-Marquardt method. Although predictions of axial and radial measured temperature profiles with both models show small differences, the calculated radial profiles of the axial velocity component are very different. We demonstrate that the model that includes turbulence compares well with mass flux measurements at the packed-bed inlet, yielding an error of 0.77 % in mass flux balance at Rep = 630. We suggest that this approach can be used efficiently for the hydrodynamics characterization and design and scale-up of packed beds with low tube to particle diameter ratio in several industrial applications.


Author(s):  
Ashish Kotwal ◽  
Che-Hao Yang ◽  
Clement Tang

The current study shows computational and experimental analysis of multiphase flows (gas-liquid two-phase flow) in channels with sudden area change. Four test sections used for sudden contraction and expansion of area in experiments and computational analysis. These are 0.5–0.375, 0.5–0.315, 0.5–0.19, 0.5–0.14, inversely true for expansion channels. Liquid Flow rates ranging from 0.005 kg/s to 0.03 kg/s employed, while gas flow rates ranging from 0.00049 kg/s to 0.029 kg/s implemented. First, single-phase flow consists of only water, and second two-phase Nitrogen-Water mixture flow analyzed experimentally and computationally. For Single-phase flow, two mathematical models used for comparison: the two transport equations k-epsilon turbulence model (K-Epsilon), and the five transport equations Reynolds stress turbulence interaction model (RSM). A Eulerian-Eulerian multiphase approach and the RSM mathematical model developed for two-phase gas-liquid flows based on current experimental data. As area changes, the pressure drop observed, which is directly proportional to the Reynolds number. The computational analysis can show precise prediction and a good agreement with experimental data when area ratio and pressure differences are smaller for laminar and turbulent flows in circular geometries. During two-phase flows, the pressure drop generated shows reasonable dependence on void fraction parameter, regardless of numerical analysis and experimental analysis.


Sign in / Sign up

Export Citation Format

Share Document