Recent Advances in Test vs Finite Element Correlations Through Design for Six Sigma Tools

Author(s):  
Santhosh K. Kompally ◽  
Vinay Ramanath ◽  
Karthikeyan Jeevanandan ◽  
Manoj Kunnil

In general, thermal generators have a combination of composites and metals in different assemblies. It is important to note that the material properties and interface stiffnesses change during the assembly process. Added to this change, the complex geometry and assembly procedures result in huge variation in material characterizations. These variabilities triggered a requirement of a unique process for material characterization at both component and assembly levels. This paper covers the details of a 6-stage DFSS methodology, which involves filling the above-stated gaps by performing mechanical tests at component and sub-assembly levels, followed by series of finite element correlations at various stages of design cycle. This paper emphasizes a DFSS-based probabilistic approach, developed with a built-in validation for evaluating finite element variables to match with assembly tests. This paper also discusses the success of this DFSS-based process in bench marking with two test cases.

Author(s):  
MA Ben Souf ◽  
O Bareille ◽  
M Ichchou ◽  
M Haddar

The random dynamic response of periodic structures with model uncertainties is here studied. For that purpose, a nonparametric model of random uncertainties is used. The present approach is based on the maximum entropy principle optimization and is developed to identify the response of linear and nonlinear dynamic systems. This non-parametric probabilistic approach is implemented in combination with the Wave Finite Element. Numerical test cases are used as examples and for validation purpose.


Author(s):  
Martha Gardner ◽  
Gene Wiggs

Six Sigma was launched at GE in 1995 by Jack Welch as a systematic way of improving the quality of delivered products and reducing cost across the entire Corporation. Soon after the first wave of Master Black Belts returned from their initial training, it was obvious that GE needed a “version” of Six Sigma adapted by a Design Engineering community that was focused on achieving specific goals of improved product performance, reliability and producibility while achieving a simultaneous reduction in the design cycle time for new products. The purpose of this paper is to share our lessons learned in adapting Six Sigma to the needs of the Design Engineering Community.


2010 ◽  
Vol 7 ◽  
pp. 98-108
Author(s):  
Yu.A. Gafarova

To solve problems with complex geometry it is considered the possibility of application of irregular mesh and the use of various numerical methods using them. Discrete analogues of the Beltrami-Mitchell equations are obtained by the control volume method using the rectangular grid and the finite element method of control volume using the Delaunay triangulation. The efficiency of using the Delaunay triangulation, Voronoi diagrams and the finite element method of control volume in a test case is demonstrated.


2020 ◽  
Vol 20 (4) ◽  
pp. 799-813
Author(s):  
Joël Chaskalovic ◽  
Franck Assous

AbstractThe aim of this paper is to provide a new perspective on finite element accuracy. Starting from a geometrical reading of the Bramble–Hilbert lemma, we recall the two probabilistic laws we got in previous works that estimate the relative accuracy, considered as a random variable, between two finite elements {P_{k}} and {P_{m}} ({k<m}). Then we analyze the asymptotic relation between these two probabilistic laws when the difference {m-k} goes to infinity. New insights which qualify the relative accuracy in the case of high order finite elements are also obtained.


2012 ◽  
Vol 487 ◽  
pp. 855-859
Author(s):  
Shi Lun Feng ◽  
Yu Ming Zhou ◽  
Pu Lin Li ◽  
Jun Li ◽  
Zhi Yong Li ◽  
...  

Abaqus finite element software can implement three-dimensional excavation design calculation, so authors used Python of Abaqus core language made the 3D design of foundation pit supporting program come ture and also did intensive study of mesh optimization during the process. Authors also did intensive comparison and analysis about grid division of the complex geometry foundation pit, through a regularization partion about a variety of special-shaped pit, we made the automatic division about the structural grid of all kinds of shapes foundation pit successful. On this basis, we achieved better calculation effects of the model. The article will introduce problems about optimization of grid in procedure.


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 29
Author(s):  
Carl F. O. Dahlberg ◽  
Jonas Faleskog ◽  
Per-Lennart Larsson

Correlation of sharp indentation problems is examined theoretically and numerically. The analysis focuses on elastic-plastic pressure-sensitive materials and especially the case when the local plastic zone is so large that elastic effects on the mean contact pressure will be small or negligible as is the case for engineering metals and alloys. The results from the theoretical analysis indicate that the effect from pressure-sensitivity and plastic strain-hardening are separable at correlation of hardness values. This is confirmed using finite element methods and closed-form formulas are presented representing a pressure-sensitive counterpart to the Tabor formula at von Mises plasticity. The situation for the relative contact area is more complicated as also discussed.


Author(s):  
Xiandong Zhou ◽  
Christoph Reimuth ◽  
Peter Stein ◽  
Bai-Xiang Xu

AbstractThis work presents a regularized eigenstrain formulation around the slip plane of dislocations and the resultant non-singular solutions for various dislocation configurations. Moreover, we derive the generalized Eshelby stress tensor of the configurational force theory in the context of the proposed dislocation model. Based on the non-singular finite element solutions and the generalized configurational force formulation, we calculate the driving force on dislocations of various configurations, including single edge/screw dislocation, dislocation loop, interaction between a vacancy dislocation loop and an edge dislocation, as well as a dislocation cluster. The non-singular solutions and the driving force results are well benchmarked for different cases. The proposed formulation and the numerical scheme can be applied to any general dislocation configuration with complex geometry and loading conditions.


2013 ◽  
Vol 353-356 ◽  
pp. 3369-3377 ◽  
Author(s):  
Ming Guang Shi ◽  
Chong Ming Song ◽  
Hong Zhong ◽  
Yan Jie Xu ◽  
Chu Han Zhang

A coupled method between the Scaled Boundary Finite Element Method (SBFEM) and Finite Element Method (FEM) for evaluating the Stress Intensity Factors (SIFs) is presented and achieved on the platform of the commercial finite element software ABAQUS by using Python as the programming language. Automatic transformation of the finite elements around a singular point to a scaled boundary finite element subdomain is realized. This method combines the high accuracy of the SBFEM in computing the SIFs with the ability to handle material nonlinearity as well as powerful mesh generation and post processing ability of commercial FEM software. The validity and accuracy of the method is verified by analysis of several benchmark problems. The coupled algorithm shows a good converging performance, and with minimum additional treatment can be able to handle more problems that cannot be solved by either SBFEM or FEM itself. For fracture problems, it proposes an efficient way to represent stress singularity for problems with complex geometry, loading condition or certain nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document