Design of an Innovative Moisture Separator Technology for Use in Nuclear Power Plants: Numerical Approach — Part 1

Author(s):  
Loris Padovan

Abstract The Moisture Separator Re-heater (MSR) is a key component of Nuclear Power Plants (NPP) both in terms of performance and avoiding erosion and erosion/corrosion damage. Wet steam is usually dried in a MSR by inertial separation using separator elements. Depending on the design of a MSR, the technology of separator elements contributes significantly to its size and performance, hence is seen as a subject for in-depth investigation, improvement and innovation. Computational Fluid Dynamics (CFD) has been used to understand the working principles of moisture separating devices, in particular the OpenFOAM platform has been utilized for this scope. Eulerian/Lagrangian models, wall-droplet interaction and water film formation models have been adopted to determine the physical phenomena occurring during the moisture separation process. Additional sub-models have been implemented to make a more robust solver and to solve in a comprehensive way all the possible physical processes: in particular a two-layers turbulence model and a film breakup model have been implemented. An out-of-the-box thinking approach was adopted to devise a new proposed chevron vane. Aerodynamic principles were used to design an innovative concept of separator panel, which can entrap the moisture droplets and water rivulets through a subsequent formation of recirculating steam representing artificial slots (hidden pockets) within the separator channel. The control of the steam separation on precise regions of the separator panel wall, helps the drainage of the water film without the utilization of physical obstacles (pockets or drainage channels). To validate the results achieved from the numerical simulation and to characterize separation performance of a new kind of separator technology, a bespoke test rig has been designed, built and put into operation at typical MSR operating conditions [1]. Throttling calorimeter methodology has been adopted to measure, with very good accuracy, the residual moisture content after the separator. The design developed has shown excellent separation performance. Particularly, this solution will allow improved MSR performance and significantly reduced MSR size. This represents an innovative technology which is a major advance on current technology available within the industry. The novel design features have been patented by General Electric. The first operation of a MSR with this technology is eagerly awaited.

Author(s):  
Carsten Hersberger ◽  
Elias Waldvogel ◽  
Joshua Bopp ◽  
Beat Ribi

Abstract The Moisture Separator Reheater (MSR) is a key component of Nuclear Power Plants (NPP), both in terms of performance and prevention of erosion/corrosion. Wet steam is usually dried in a MSR by inertial separation of the liquid water using separator elements. Depending on the design of the MSR, the technology of the separator elements contributes significantly to its size and performance. An innovative concept of separator panels was conceived by means of aerodynamic principles as outlined in part 1 of this paper [1]. Computational Fluid Dynamics (CFD) has been used to understand the working principles of various moisture separating devices. The investigated separator panels are designed to capture the water droplets in a region of flow separation (invisible pockets) within the separator channels. To characterize the separation performance of these separator panels, a test rig has been developed and built at the University of Applied Sciences Northwestern Switzerland (FHNW). This test rig was then operated at typical MSR operating conditions. To meet the required moisture content and flow conditions, preheated water was injected into the saturated steam flow. In order to measure the residual moisture content after the separation the throttling calorimeter methodology has been adopted. The newly designed panels have shown very good separation performance. According to the measurements carried out, a residual moisture content of less than 0.1 % can be guaranteed. The innovative technology, which clearly differentiates the OEM, for who this research was carried out, from its competitors, will allow considerable size and cost reduction as well as opportunities to retrofit existing MSRs.


Author(s):  
Koushik A. Manjunatha ◽  
Andrea Mack ◽  
Vivek Agarwal ◽  
David Koester ◽  
Douglas Adams

Abstract The current aging management plans of passive structures in nuclear power plants (NPPs) are based on preventative maintenance strategies. These strategies involve periodic, manual inspection of passive structures using nondestructive examination (NDE) techniques. This manual approach is prone to errors and contributes to high operation and maintenance costs, making it cost prohibitive. To address these concerns, a transition from the current preventive maintenance strategy to a condition-based maintenance strategy is needed. The research presented in this paper develops a condition-based maintenance capability to detect corrosion in secondary piping structures in NPPs. To achieve this, a data-driven methodology is developed and validated for detecting surrogate corrosion processes in piping structures. A scaled-down experimental test bed is developed to evaluate the corrosion process in secondary piping in NPPs. The experimental test bed is instrumented with tri-axial accelerometers. The data collected under different operating conditions is processed using the Hilbert-Huang Transformation. Distributional features of phase information among the accelerometers were used as features in support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO) logistic regression methodologies to detect changes in the pipe condition from its baseline state. SVM classification accuracy averaged 99% for all models. LASSO classification accuracy averaged 99% for all models using the accelerometer data from the X-direction.


Author(s):  
Issaku Fujita ◽  
Kotaro Machii ◽  
Teruaki Sakata

Moisture Separator Reheaters (MSRs) of Nuclear power plants, especially 1st generation type (commercial operation started from between 1970 and 1982), has been suffered from various problems like severe erosion, moisture separation performance deterioration, drain sub cooling. To solve these problems and performance improvement, improved MSR was developed. At the new MSR, high performance SS439 stainless steel round type tube bundle was applied, where heating steam distribution is optimized by orifice plate in order to minimize the drain sub cooling. Based on the CFD approach, cycle steam distribution was optimized and FAC resistant material application for the internal parts of MSRs was determined. As a result, pressure drop was reduced by 0.6% against the HP turbine exhaust pressure. Performance of moisture separation was improved by the latest chevron type separator. Where, the reverse pressure is locally caused at the drainage area of the separator because remarkable longitudinal pressure distribution is formed by the high-speed steam flow in the manifold. Then, a new moisture separation structure was developed in consideration of the influence that this reverse pressure gave to the separator performance.


2003 ◽  
Author(s):  
J. Guillou ◽  
L. Paulhiac

Several vibration-induced failures at the root of small bore piping systems occurred in French nuclear power plants in past years. The evaluation of the failure risk of the small bore pipes requires a fair estimation of the bending stress under operating conditions. As the use of strain gauges is too time-consuming in the environmental conditions of nuclear power plants, on-site acceleration measurements combined with numerical models are easier to handle. It still requires yet a large amount of updating work to estimate the stress in multi-span pipes with elbows and supports. The aim of the present study is to propose an alternate approach using two accelerometers to measure the local nozzle deflection, and an analytical expression of the bending stiffness of the nozzle on the main pipe. A first formulation is based on a static deformation assumption, thus allowing the use of a simple analog converter to get an estimation of the RMS value of the bending stress. To get more accurate results, a second method is based on an Euler Bernoulli deformation assumption: a spectral analyzer is then required to get an estimation of the spectrum of the bending stress. A better estimation of its RMS value is then obtained. An experimental validation of the methods based on strain gauges has been successfully performed.


2006 ◽  
Vol 326-328 ◽  
pp. 1251-1254 ◽  
Author(s):  
Chi Yong Park ◽  
Jeong Keun Lee

Fretting wear generated by flow induced vibration is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Understanding of tube wear characteristics is very important to keep the integrity of the steam generator tubes to secure the safety of the nuclear power plants. Experimental examination has been performed for the purpose of investigating the impact fretting. Test material is alloy 690 tube and 409 stainless steel tube supports. From the results of experiments, wear scar progression is investigated in the case of impact-fretting wear test of steam generator tubes under plant operating conditions such as pressure of 15MPa, high temperature of 290C and low dissolved oxygen. Hammer imprint that is actual damaged wear pattern, has been observed on the worn surface. From investigation of wear scar pattern, wear mechanism was initially the delamination wear due to cracking the hard oxide film and finally transferred to the stable impact-fretting pattern.


2007 ◽  
Vol 26-28 ◽  
pp. 1269-1272
Author(s):  
Chi Yong Park ◽  
Jeong Kun Kim ◽  
Tae Ryong Kim ◽  
Sun Young Cho ◽  
Hyun Ik Jeon

Inconel alloy such as alloy 600 and alloy 690 is widely used as the steam generator tube materials in the nuclear power plants. The impact fretting wear tests were performed to investigate wear mechanism between tube alloy and 409 stainless steel tube support plates in the simulated steam generator operating conditions, pressure of 15MPa, high temperature water of 290°C and low dissolved oxygen(<10 ppb). From investigation of wear test specimens by the SEM and EDS analysis, hammer imprint, which is known to be an actual damaged wear pattern, has been observed on the worn surface, and fretting wear mechanism was investigated. Wear progression of impact-fretting wear also has been examined. It was observed that titanium rich phase contributes to the formation of voids and cracks in sub-layer of fretting wear damage by impact fretting wear.


Author(s):  
A. A. Mikhalevic ◽  
U. A. Rak

The article presents the analysis of the specific features of modeling the operation of energy systems with a large share of nuclear power plants (NPP). The study of operating conditions and characteristics of different power units showed that a power engineering system with a large share of NPP and CHPP requires more detailed modeling of operating modes of generating equipment. Besides, with an increase in the share of installations using renewable energy sources, these requirements are becoming tougher. A review of the literature revealed that most often the curve of the load duration and its distribution between blocks are used for modeling energy systems. However, since this method does not reflect a chronological sequence, it can only be used if there are no difficulties with ensuring power balance. Along with this, when the share of CHP and nuclear power plants is high, to maintain a balance of power one must know the parameters and a set of powered equipment not only currently but, also, in the previous period. But this is impossible if a curve of load duration is used. For modeling, it is necessary to use an hourly load curve and to calculate the state of the energy system for each subsequent hour in chronological order. In the course of a comparative analysis of available computer programs, it was not possible to identify a suitable model among the existing ones. The article presents a mathematical model developed by the authors, which makes us possible to simulate the operation of a power engineering system with a large share of NPP and CHPP while maintaining the power balance for each hour of the forecast period. Verification of the proposed model showed good accuracy of the methods used.


2012 ◽  
Vol 59 (2) ◽  
pp. 113-118 ◽  
Author(s):  
M. A. Gotovskii ◽  
B. S. Fokin ◽  
M. Ya. Belen’kii ◽  
M. E. Lebedev ◽  
M. A. Blinov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document