Out-of-Pile Heat Transfer Test Device for Low Pressure Irradiation Capsule

Author(s):  
Yongzhe Ma ◽  
Peisheng Zhang

In-pile irradiation capsules are used for fuel and material irradiation at research reactor. Design of irradiation capsule should be based on thermal analysis to determine the key structural parameters. A set of out-of-pile heat transfer test device is innovated for the design validation. Heat transfer performance of in-pile irradiation capsule can be simulated, which includes heat conduction, convection and radiation. Electric heating rod is used as the heat source for the device, which simulates linear power or heat flux of in-pile irradiation capsule. Temperature different of internal components is simulated by adjusting helium gap. Thermocouples are fixed to measure wall temperature and internal temperature of the components in the device. Some out-of-pile heat transfer tests have been carried out for irradiation capsule development for China Advanced Research Reactor (CARR) and China Experimental Fast Reactor (CEFR) at China Institute of Atomic Energy (CIAE). The test verifies surface and internal temperature of the capsules and conclusions of thermal analysis. A finished in-pile test verifies the capsule design at rated power, which also proves that results of the out-of-pile heat transfer test are conservative. The article describes the function, structure, test process and other aspects of the technical requirements of the heat transfer test device.

2021 ◽  
Vol 16 ◽  
pp. 155892502110479
Author(s):  
Xiao Li ◽  
Bo Kuai ◽  
Xikai Tu ◽  
Jiahao Tan ◽  
Xuan Zhou

In low temperature environment, electric heating clothing can provide extra heat for human body through built-in heat source, so it has better thermal insulation effect. The thermal analysis is the initial step for electric heating clothing design. The current thermal analysis of electric heating textiles focuses on the fabric itself instead of the effect of skin tissue metabolism and heat production. In order to improve the accuracy of skin surface temperature prediction, the biological heat transfer need be modeled to analyze the internal temperature distribution of the heating suit system. In this paper, a three-dimensional (3D) thermal analysis model of electric heating clothing combined with human skin tissue is established. Firstly, the coupling analysis of Fourier heat conduction and Pennes biological heat transfer equation is carried out. Then the reliability of the 3D thermal analysis model is verified by finite element analysis (FEA). The results show that the fitting error between the three-dimensional model analysis data and FEA simulation data is 5°C, which proves that the model can accurately predict the system temperature. Finally, we make further research about the effects of ambient temperature, clothing layer thickness, and input power on the maximum skin surface temperature. This study provides theoretical foundation for the design of wearable thermal management fabric.


Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Brent M. Wilson ◽  
Kevin D. Cole ◽  
Lariza Navarro

Catastrophic bearing failure is a major concern for the railroad industry because it can lead to costly train stoppages and even derailments. Excessive heat buildup within the bearing is one of the main factors that can warn of impending failure. A question is often raised regarding the transfer of heat from a wheel during braking and whether this can lead to false setouts. Therefore, this work was motivated by the need to understand and quantify the heat transfer paths to the tapered roller bearing within the railroad wheel assembly when wheel heating occurs. A series of experiments and finite element (FE) analyses were conducted in order to identify the different heat transfer mechanisms, with emphasis on radiation. The experimental setup consisted of a train axle with two wheels and bearings pressed onto their respective journals. One of the wheels was heated using an electric tape placed around the outside of the rim. A total of 32 thermocouples scattered throughout the heated wheel, the axle, and the bearing circumference measured the temperature distribution within the assembly. In order to quantify the heat radiated to the bearing, a second set of experiments was developed; these included, in addition to the axle and the wheel pair, a parabolic reflector that blocked body-to-body radiation to the bearing. The appropriate boundary conditions including ambient temperature, emissivity, and convection coefficient estimates were measured or calculated from the aforementioned experiments. The FE thermal analysis of the wheel assembly was performed using the ALGOR™ software. Experimental temperature data along the radius of the heated wheel, the bearing circumference, and at selected locations on the axle were compared to the results of the FE model to verify its accuracy. The results indicate that the effect of thermal radiation from a hot wheel on the cup temperature of the adjacent bearing is minimal when the wheel tread temperature is at 135°C (275°F), and does not exceed 17°C (31°F) when the wheel tread is at 315°C (600°F).


2011 ◽  
Vol 393-395 ◽  
pp. 412-415
Author(s):  
Jian Hua Zhong ◽  
Li Ming Jiang ◽  
Kai Feng

In this article, finned copper tube used in the central air conditioning was acted as the discussed object. According to the combination with actual processing and theoretical calculations, Five finned tube was selected with typical structural parameters, and established their entity model using Pro/E, then the heat transfer process of finned tube was simulated through the ANSYS, the effect of the fin height, fin thickness and other structure parameters to the heat transfer enhancement of finned tube was researched. Meantime the efficiency of the heat transfer under different convection heat transfer coefficient was also studied.


2011 ◽  
Vol 383-390 ◽  
pp. 811-815
Author(s):  
Hu Gen Ma ◽  
Jian Mei Bai ◽  
Rong Jian Xie ◽  
Wen Jing Tu

In this paper, the boiling heat transfer test rig was designed and built, while the characteristics of boiling Heat Transfer of refrigerants in micro-channel was researched. The wall temperature of micro-channel was measured by TH5104 Infrared thermography. The results showed that there were obvious variations for wall temperature of micro-channel along the axial direction when boiling heat transfer occurred in the micro-channel. The temperature distribution affected obviously by the heat flux, mass flow rate; vapor quality and heat transfer model.


1961 ◽  
Vol 80 (7) ◽  
pp. 534-534
Author(s):  
B. Rolsma

Author(s):  
Qihang Liu ◽  
G.Q. Xu ◽  
Jie Wen ◽  
Yanchen Fu ◽  
Laihe Zhuang ◽  
...  

Abstract This paper presents a multi-condition design method for the aircraft heat exchanger (HEX), marking with light weight, compactness and wide range of working conditions. The quasi-traversal genetic algorithm (QT-GA) method is introduced to obtain the optimal values of five structural parameters including the height, the tube diameter, the tube pitch, and the tube rows. The QT-GA method solves the deficiency of the conventional GA in the convergence, and gives a clear correlation between design variables and outputs. Pressure drops, heat transfer and the weight of the HEX are combined in a single objective function of GA in the HEX design, thus the optimal structure of the HEX suitable for all the working conditions can be directly obtained. After optimization, the weight of the HEX is reduced to 2.250 kg, more than 20% lower than a common weight of around 3 kg. Based on the optimal structure, the off-design performance of the HEX is further analyzed. Results show that the extreme working conditions for the heat transfer and the pressure drops are not consistent. It proves the advance of the multi-condition design method over traditional single-condition design method. In general, the proposed QT-GA design method is an efficient way to solve the multi-condition problems related to the aircraft HEX or other energy systems.


2018 ◽  
Vol 53 (15) ◽  
pp. 2053-2064 ◽  
Author(s):  
Tassos Mesogitis ◽  
James Kratz ◽  
Alex A Skordos

Thermochemical properties are needed to develop process models and define suitable cure cycles to convert thermosetting polymers into rigid glassy materials. Uncertainty surrounding the suitability of thermal analysis techniques and semi-empirical models developed for conventional composite materials has been raised for the new class of particle interleaf materials. This paper describes kinetics, conductivity, heat capacity and glass transition temperature measurements of HexPly® M21 particle interleaf material. Thermal models describing conventional, non-particle epoxy systems were fit to the data and validated through a thick-section cure. Results from curing experiments agree with heat transfer simulation predictions, indicating that established thermal analysis techniques and models can describe polymerisation and evolving material properties during processing of a material representing the class of interleaf toughened systems. A sensitivity study showed time savings up to about 20%, and associated energy-efficiency-productivity benefits can be achieved by using cure simulation for particle interleaf materials.


2012 ◽  
Vol 497 ◽  
pp. 121-125
Author(s):  
Shao Fei Jiang ◽  
Yin Kong ◽  
Ji Quan Li ◽  
Guo Zhong Chai

The demand of high quality for plastic products has facilitated the development of Plastic Injection Molding Technology, many new sorts of methods were created to improve the surface quality of plastic products, such as Rapid Heat Cycle Molding. But the temperature response law hasn’t figured out yet, and the influence elements of this process haven’t been clear, which seriously delay the appliction of Rapid Heat Cycle Molding.


Sign in / Sign up

Export Citation Format

Share Document