Analysis of Bypass Effect on a 250 MW High Temperature Gas-Cooled Reactor

Author(s):  
Yanhua Zheng ◽  
Fubing Chen ◽  
Lei Shi

Pebble bed modular high temperature gas-cooled reactors (HTR), due to their characteristics of low power density, slender structure, large thermal inertia of fuel elements and reactor component materials (graphite), have good inherent safety features. However, the reflectors consisting of large piles of graphite blocks will form huge numbers of certain bypass gaps in the radial, axial and circumferential directions, thus affecting the effective cooling flow into the reactor core, which is one of the concerned issues of HTRs. According to the preliminary design of the Chinese high temperature gas-cooled reactor pebble-bed modular (HTR-PM), the thermal-hydraulic calculation model is established in this paper. Based on this model, considering different bypass flow, that is to say, different core cooling flow, fuel element temperature, outlet helium temperature and the core pressure drop in the normal operation, as well as the maximal fuel temperature during the depressurized loss of forced cooling (DLOFC) accident are analyzed. This study on bypass effects on the steady-state and transient phases can further demonstrate the HTR safety features.

Author(s):  
Yanhua Zheng ◽  
Lei Shi ◽  
Fubing Chen

One of the most important properties of the modular high temperature gas-cooled reactor is that the decay heat in the core can be carried out solely by means of passive physical mechanism after shutdown due to accidents. The maximum fuel temperature is guaranteed not to exceed the design limitation, so as to the integrity of the fuel particles and the ability of retaining fission product will keep well. Nonetheless, the auxiliary active core cooling should be design to help removing the decay heat and keeping the reactor in an appropriate condition effectively and quickly in case of reactor scram due to any transient and the main helium blower or steam generator unusable. Based on the preliminary design of the 250 MW pebble-bed modular high temperature gas-cooled reactor, assuming that the core cooling will be started up 1 hour after the scram, different core cooling schemes are studied in this paper. After the reactor shutdown, a certain degree of natural convection will come into being in the core due to the non-uniform temperature distribution, which will accordingly change the core temperature distribution and in turn influence the outlet hot helium temperature. Different cooling flow rates are also analyzed, and the important parameters, such as the fuel temperature, outlet hot helium temperature and the pressure vessel temperature, are studied in detail. A feasible core cooling scheme, as well as the reasonable design parameters could be determined based on the analysis. It is suggested that, considering the temperature limitation of the structure material, the coolant flow direction should be same as that of the normal operation, and the flow rate could not be too large.


Author(s):  
Yanhua Zhengy ◽  
Lei Shi

Depressurized loss of coolant accident (DLOCA) is one of the most important design basis accidents for high temperature gas-cooled reactors. Analysis of the reactor characteristic behavior during DLOCA can provide useful reference to the physics, thermo-hydraulic and structure designs of the reactor core. In this paper, according to the preliminary design of the 250MW Pebble-bed Modular High Temperature Gas-cooled Reactor (HTR-PM), three cases of DLOCA: a instantaneous depressurization along with a flow coastdown and scram at zero time, a main pipe with a diameter of 65mm rupture, and a instrument pipe with a diameter of 10mm broken, are studied by the help of two different kinds of software THERMIX and TINTE. The key parameters of different cases including reactor power, temperature distribution of the core and pressure vessel, and the decay power removal by the passive residual heat remove system (RHRS) are compared in detail. Some uncertainties, such as residual heat calculation, power distribution, heat conductivity of fuel element, etc., are analyzed in order to evaluate the safety margin of the maximum fuel temperature during DLOCA. The calculating results show that, the decay heat in the DLOCA can be removed from the reactor core solely by means of physical processes in a passive way, so that the temperature limits of fuel and components are still obeyed. It also illustrates that the HTR-PM can reach 250MW reactor power per unit and still can keep the inherent safety.


Author(s):  
Cheng Ren ◽  
Xing-Tuan Yang ◽  
Cong-Xin Li ◽  
Zhi-Yong Liu ◽  
Sheng-Yao Jiang

High Temperature Gas-cooled Reactor (HTGR) is a typical representation of Generation IV nuclear power system for its advantages like inherent safety, high efficiency, widely application as high-temperature heat source. The first two 250-MWt high temperature reactor pebble bed modules (HTR-PM) have be installing at the Shidaowan plant in Shandong Province, China, which have the cylindrical core structure with thousands of spherical fuel elements randomly packed inside. The values of the effective thermal conductivity of the pebble bed core under different temperatures are essential parameters for the design of HTGR, which are needed to analyze the maximum fuel temperature, temperature distribution and residual heat releasing ability in reactor core. For this purpose, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity through the pebble bed under vacuum condition and helium environment with temperature up to 1600°C. An essential material test equipment is built in advance to provide reliable materials and technical support for the design of the final experimental device aimed at measuring the effective thermal conductivity of pebble bed type reactor core of the high temperature gas-cooled reactor. The design of the essential material test equipment is introduced in detail, including the heat element, the insulation structure, the temperature detector, cooling water system, vacuum system, hydraulic lifting system, data acquisition system and so on. Several key technologies in design are described in detail. Test temperature in the equipment was elevated up to 1600°C, which covers the whole temperature range of the normal operation and accident condition of HTGR and could fully meet the test requirements of materials used in the reactor. The construction and commissioning of the test equipment shows that the test equipment has met the design requirements and verified the feasibility of the related materials and structures.


Author(s):  
Maria Elizabeth Scari ◽  
Antonella Lombardi Costa ◽  
Claubia Pereira ◽  
Clarysson Alberto Mello da Silva ◽  
Maria Auxiliadora Fortini Veloso

Several efforts have been considered in the development of the modular High Temperature Gas cooled Reactor (HTGR) planned to be a safe and efficient nuclear energy source for the production of electricity and industrial applications. In this work, the RELAP5-3D thermal hydraulic code was used to simulate the steady state behavior of the 10 MW pebble bed high temperature gas cooled reactor (HTR-10), designed, constructed and operated by the Institute of Nuclear and New Energy Technology (INET), in China. The reactor core is cooled by helium gas. In the simulation, results of temperature distribution within the pebble bed, inlet and outlet coolant temperatures, coolant mass flow, and others parameters have been compared with the data available in a benchmark document published by the International Atomic Energy Agency (IAEA) in 2013. This initial study demonstrates that the RELAP5-3D model is capable to reproduce the thermal behavior of the HTR-10.


Author(s):  
Zhe Dong ◽  
Xiaojin Huang ◽  
Liangju Zhang

The modular high-temperature gas-cooled nuclear reactor (MHTGR) is seen as one of the best candidates for the next generation of nuclear power plants. China began to research the MHTGR technology at the end of the 1970s, and a 10 MWth pebble-bed high temperature reactor HTR-10 has been built. On the basis of the design and operation of the HTR-10, the high temperature gas-cooled reactor pebble-bed module (HTR-PM) project is proposed. One of the main differences between the HTR-PM and HTR-10 is that the ratio of height to diameter corresponding to the core of the HTR-PM is much larger than that of the HTR-10. Therefore it is not proper to use the point kinetics based model for control system design and verification. Motivated by this, a nodal neutron kinetics model for the HTR-PM is derived, and the corresponding nodal thermal-hydraulic model is also established. This newly developed nodal model can reflect not only the total or average information but also the distribution information such as the power distribution as well. Numerical simulation results show that the static precision of the new core model is satisfactory, and the trend of the transient responses is consistent with physical rules.


Author(s):  
Zheng Yanhua ◽  
Shi Lei

Water-ingress accident, caused by the steam generator heating tube rupture of a high temperature gas-cooled reactor, will introduce a positive reactivity to lead the nuclear power increase rapidly, as well as the chemical reaction of graphite fuel elements and reflector structure material with steam. Increase of the primary circuit pressure may result in the opening of the safety valve, which will cause the release of radioactive isotopes and flammable water gas. The analysis of such an important and particular accident is significant for verifying the inherent safety characteristics of the pebble-bed modular high temperature gas-cooled reactor. Based on the preliminary design of the 250MW Pebble-bed Modular High Temperature Gas-cooled Reactor (HTR-PM), the design basis accident of double-ended guillotine break of a heating tube has been analyzed by using TINTE, which is a special transient analysis program for high temperature gas-cooled reactors. Some safety relevant concerns, such as the fuel temperature and primary loop pressure, the graphite corrosion inventory, the water gas releasing amount, as well as the natural convection influence under the condition of the failure of the blower flaps shut down, have been studied in detail. The calculation result of the design basis accident indicates that, the maximal possible water ingress amount is less than 600 kg and the maximal fuel temperature keeps far below the design limitation of 1620°C. The result also shows that the slight amount of graphite corrosion will not damage the reactor structure and the fuel element, and there is no potential explosive risk caused by the opening of the safety valve.


Author(s):  
Yujie Dong ◽  
Fubing Chen ◽  
Zuoyi Zhang ◽  
Shouyin Hu ◽  
Lei Shi ◽  
...  

Safety demonstration tests on the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) were conducted to verify the inherent safety characteristics of modular High Temperature Gas-cooled Reactors (HTGRs) as well as to obtain the reactor core and primary cooling system transient data for validation of HTGR safety analysis models and codes. As one of these safety demonstration tests, a simulated anticipated transient without scram (ATWS) test called loss of forced cooling by tripping the helium circulator without reactor scram was carried out at 100% rated power level in July, 2005. This paper simulates the reactor transient behaviour during the test by using the THERMIX code system. The reactor power transition and a comparison with the test result are presented. Owing to the negative temperature coefficient of reactivity, the reactor undergoes a self-shutdown after the stop of the helium circulator and keeps subcritical till the end of the test. Due to the loss of forced cooling, the residual heat is slowly transferred from the core to the Reactor Cavity Cooling System (RCCS) by conduction, radiation and natural convection. The thermal response of this heat removal process is investigated. The calculated and test temperature transients of the measuring points in the reactor internals are given and the differences are preliminarily discussed. With respect to the safety features of the HTR-10, it is of most importance that the maximum fuel center temperature is always lower than 1230 °C which is the limited value at the first phase of the HTR-10 project. The simulation and test results show that the HTR-10 has the built-in passive safety features, and the THERMIX code system is applicable and reasonable for simulating and analyzing the helium circulator trip ATWS test.


Sign in / Sign up

Export Citation Format

Share Document