Simulation and Analysis of Helium Circulator Trip ATWS Test at Full Power on the HTR-10

Author(s):  
Yujie Dong ◽  
Fubing Chen ◽  
Zuoyi Zhang ◽  
Shouyin Hu ◽  
Lei Shi ◽  
...  

Safety demonstration tests on the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) were conducted to verify the inherent safety characteristics of modular High Temperature Gas-cooled Reactors (HTGRs) as well as to obtain the reactor core and primary cooling system transient data for validation of HTGR safety analysis models and codes. As one of these safety demonstration tests, a simulated anticipated transient without scram (ATWS) test called loss of forced cooling by tripping the helium circulator without reactor scram was carried out at 100% rated power level in July, 2005. This paper simulates the reactor transient behaviour during the test by using the THERMIX code system. The reactor power transition and a comparison with the test result are presented. Owing to the negative temperature coefficient of reactivity, the reactor undergoes a self-shutdown after the stop of the helium circulator and keeps subcritical till the end of the test. Due to the loss of forced cooling, the residual heat is slowly transferred from the core to the Reactor Cavity Cooling System (RCCS) by conduction, radiation and natural convection. The thermal response of this heat removal process is investigated. The calculated and test temperature transients of the measuring points in the reactor internals are given and the differences are preliminarily discussed. With respect to the safety features of the HTR-10, it is of most importance that the maximum fuel center temperature is always lower than 1230 °C which is the limited value at the first phase of the HTR-10 project. The simulation and test results show that the HTR-10 has the built-in passive safety features, and the THERMIX code system is applicable and reasonable for simulating and analyzing the helium circulator trip ATWS test.

Author(s):  
Yanhua Zhengy ◽  
Lei Shi

Depressurized loss of coolant accident (DLOCA) is one of the most important design basis accidents for high temperature gas-cooled reactors. Analysis of the reactor characteristic behavior during DLOCA can provide useful reference to the physics, thermo-hydraulic and structure designs of the reactor core. In this paper, according to the preliminary design of the 250MW Pebble-bed Modular High Temperature Gas-cooled Reactor (HTR-PM), three cases of DLOCA: a instantaneous depressurization along with a flow coastdown and scram at zero time, a main pipe with a diameter of 65mm rupture, and a instrument pipe with a diameter of 10mm broken, are studied by the help of two different kinds of software THERMIX and TINTE. The key parameters of different cases including reactor power, temperature distribution of the core and pressure vessel, and the decay power removal by the passive residual heat remove system (RHRS) are compared in detail. Some uncertainties, such as residual heat calculation, power distribution, heat conductivity of fuel element, etc., are analyzed in order to evaluate the safety margin of the maximum fuel temperature during DLOCA. The calculating results show that, the decay heat in the DLOCA can be removed from the reactor core solely by means of physical processes in a passive way, so that the temperature limits of fuel and components are still obeyed. It also illustrates that the HTR-PM can reach 250MW reactor power per unit and still can keep the inherent safety.


Author(s):  
Yanhua Zheng ◽  
Lei Shi

Reactivity accident due to inadvertent withdrawal of the control rod is one kind of the design basis accident for high temperature gas-cooled reactors, which should be analyzed carefully in order to validate the reactor inherent safety properties. Based on the preliminary design of the Chinese Pebble-bed Modular High Temperature Gas-cooled Reactor (HTR-PM) with single module power of 250MW, several cases of reactivity accident has been studied by the help of the software TINTE in the paper, e.g., the first scram signal works or not, the absorber balls (secondary shutdown units) drop or not, and the ATWS situation is also taken into account. The dynamic processes of the important parameters including reactor power, fuel temperature and Xenon concentration are studied and compared in detail between these different cases. The calculating results show that, the decay heat during the reactivity accidents can be removed from the reactor core solely by means of physical processes in a passive way, so that the temperature limits of fuel element and other components are still obeyed, which can effectively keep the integrality of the fuel particles to avoid massive fission products release. This will be helpful to the further detail design of the HTR-PM demonstrating power plant project.


Author(s):  
Yanhua Zheng ◽  
Fubing Chen ◽  
Lei Shi

Pebble bed modular high temperature gas-cooled reactors (HTR), due to their characteristics of low power density, slender structure, large thermal inertia of fuel elements and reactor component materials (graphite), have good inherent safety features. However, the reflectors consisting of large piles of graphite blocks will form huge numbers of certain bypass gaps in the radial, axial and circumferential directions, thus affecting the effective cooling flow into the reactor core, which is one of the concerned issues of HTRs. According to the preliminary design of the Chinese high temperature gas-cooled reactor pebble-bed modular (HTR-PM), the thermal-hydraulic calculation model is established in this paper. Based on this model, considering different bypass flow, that is to say, different core cooling flow, fuel element temperature, outlet helium temperature and the core pressure drop in the normal operation, as well as the maximal fuel temperature during the depressurized loss of forced cooling (DLOFC) accident are analyzed. This study on bypass effects on the steady-state and transient phases can further demonstrate the HTR safety features.


Author(s):  
Zheng Yanhua ◽  
Shi Lei

Reactivity accident due to inadvertent withdrawal of the control rod is one kind of the design basis accident for high temperature gas-cooled reactors, which should be analyzed carefully in order to validate the reactor inherent safety properties. Based on the preliminary design of the Chinese pebble-bed modular high temperature gas-cooled reactor (HTR-PM) with single module power of 250 MW, several cases of reactivity accident has been studied by the help of the software TINTE in the paper (e.g., the first scram signal works or not, the absorber balls (secondary shutdown units) drop or not) and the ATWS situation is also taken into account. The dynamic processes of the important parameters including reactor power, fuel temperature, and xenon concentration are studied and compared in detail between these different cases. The calculating results show that the decay heat during the reactivity accidents can be removed from the reactor core solely by means of physical processes in a passive way so that the temperature limits of the fuel element and other components are still obeyed, which can effectively keep the integrality of the fuel particles to avoid massive fission products release. This will be helpful to the further detail design of the HTR-PM demonstrating power plant project.


Author(s):  
Jiang Zhu ◽  
Feng Xie

The high temperature gas-cooled reactor pebbled-bed module (HTR-PM) which is a modular high temperature gas-cooled reactor demonstration power plant, is characterized by inherent safety features and high generating efficiency. It adopts numerous graphite for structural materials in the reactor core, helium as primary coolant, and tristructural isotropic (TRISO) coated particles embedded in the graphite matrix as fuel elements. However, at high temperature the impurities in the helium can react with the graphite to cause corrosion of structural materials. Therefore, it is very necessary to monitor and control the composition and content of gaseous impurities in the primary coolant. In HTR-PM, the gas sampling and analyzing system has been designed to sample the primary helium at different positions in the helium purification system which is used to reduce the quantity of chemical impurities and remove the radioactive dust and gaseous fission products in the primary loop, and monitor the gas composition and individual concentration online. In the current paper, the composition of the gaseous impurities which need to be monitored in the primary loop of HTR-PM is presented, the design of the gas sampling positions in the helium purification system is discussed, and the main gas analyzing instruments are introduced.


Author(s):  
Isao Minatsuki ◽  
Tomomi Otani ◽  
Katsusuke Shimizu ◽  
Tetsuo Saguchi ◽  
Sunao Oyama ◽  
...  

A business plan and a new concept of the Mitsubishi small-sized High temperature gas-cooled modular Reactors (MHR-50/100) had been developed as reported in a paper at the HTR-2010 conference in Prague. The present paper reports the results of ensuing conceptual design study including updated market researches, improved safety features of the plant, and the plant dynamics analysis. Market researches on Japan, the USA, Southeast Asia and the Middle East have been updated applying the latest energy outlook data. The result shows that the potential market share for the type of HTGR (high temperature gas reactor) reactors is expected to be 10–20% in new construction of heat source plants in those market areas. A financial analysis made based on the results of the updated market research and the plant cost evaluations indicates that the feasibility of an HTGR business potentially exists. Concerning about the conceptual design, as main themes of the study, a plant design, safety design and plant dynamics have been carried out. The MHR-50/100 high safety characteristics have been confirmed based on the results of the following studies as reported in the present paper: (1) An investigation of a safety scenario during occurrence of a Total Black Out event; (2) An analysis of the reactor decay heat removal via a natural circulation. Lastly, the control methods for the reactor and associated steam cycle system for the MHR-50 have been studied. The results show that the reactor power changes can be effectively achieved by controlling the primary system helium flow rate. The ASURA code developed by MHI is used for simulation of such typical plant transients as 10% step load reduction and full load rejection. The results confirm the easy operability and controllability of the plant.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Fubing Chen ◽  
Yujie Dong ◽  
Zuoyi Zhang

The 10 MW High Temperature Gas-Cooled Reactor-Test Module (HTR-10) is the first High Temperature Gas-Cooled Reactor in China. With the objective of raising the reactor power from 30% to 100% rated power, the power ascension test was planned and performed in January 2003. The test results verified the practicability and validity of the HTR-10 power regulation methods. In this study, the power ascension process is preliminarily simulated using the THERMIX code. The code satisfactorily reproduces the reactor transient parameters, including the reactor power, the primary helium pressure, and the primary helium outlet temperature. Reactor internals temperatures are also calculated and compared with the test values recorded by a number of thermocouples. THERMIX correctly simulates the temperature variation tendency for different measuring points, with good to fair agreement between the calculated temperatures and the measured ones. Based on the comparison results, the THERMIX simulation capability for the HTR-10 dynamic characteristics during the power ascension process can be demonstrated. With respect to the reactor safety features, it is of utmost importance that the maximum fuel center temperature during the test process is always much lower than the fuel temperature limit of 1620°C.


Author(s):  
Shoji Takada ◽  
Shunki Yanagi ◽  
Kazuhiko Iigaki ◽  
Masanori Shinohara ◽  
Daisuke Tochio ◽  
...  

HTTR is a helium gas cooled graphite-moderated HTGR with the rated power 30 MWt and the maximum reactor outlet coolant temperature 950°C. The vessel cooling system (VCS), which is composed of thermal reflector plates, cooling panel composed of fins connected between adjacent water cooling tubes, removes decay heat from reactor core by heat transfer of thermal radiation, conduction and natural convection in case of loss of forced cooling (LOFC). The metallic supports are embedded in the biological shielding concrete to support the fins of VCS. To verify the inherent safety features of HTGR, the LOFC test is planned by using HTTR with the VCS inactive from an initial reactor power of 9 MWt under the condition of LOFC while the reactor shut-down system disabled. In this test, the temperature distribution in the biological shielding concrete is prospected locally higher around the support because of thermal conduction in the support. A 2-dimensional symmetrical model was improved to simulate the heat transfer to the concrete through the VCS support in addition to the heat transfer thermal radiation and natural convection. The model simulated the water cooling tubes setting horizontally at the same pitch with actual configuration. The numerical results were verified in comparison with the measured data acquired from the test, in which the RPV was heated up to around 110 °C without nuclear heating with the VCS inactive, to show that the temperature is locally high but kept sufficiently low around the support in the concrete due to sufficient thermal conductivity to the cold temperature region.


Author(s):  
R. G. Adams ◽  
F. H. Boenig

The Gas Turbine HTGR, or “Direct Cycle” High-Temperature Gas-Cooled, Reactor power plant, uses a closed-cycle gas turbine directly in the primary coolant circuit of a helium-cooled high-temperature nuclear reactor. Previous papers have described configuration studies leading to the selection of reactor and power conversion loop layout, and the considerations affecting the design of the components of the power conversion loop. This paper discusses briefly the effects of the helium working fluid and the reactor cooling loop environment on the design requirements of the direct-cycle turbomachinery and describes the mechanical arrangement of a typical turbomachine for this application. The aerodynamic design is outlined, and the mechanical design is described in some detail, with particular emphasis on the bearings and seals for the turbomachine.


Sign in / Sign up

Export Citation Format

Share Document