Development of Supercritical Water Heat-Transfer Correlation for Vertically-Upward Internally-Ribbed Tubes

Author(s):  
Weiqiang Zhang ◽  
Huixiong Li ◽  
Qing Zhang ◽  
Yifang Zhang ◽  
Tai Wang

The investigation on the heat transfer characteristics for supercritical pressure water (SCW) is of value for the development of the supercritical water-cooled nuclear reactor (SCWR). As an important heat transfer enhancement element, heat transfer for SCW in internally-ribbed tubes was still not solved, though lots of experimental studies have been published and a great many heat transfer correlations were proposed. This paper presented an analysis of heat transfer in the internally-ribbed tubes, through comparing heat transfer correlations for SCW gained from different internally-ribbed tubes under the same operating condition. It was found that all existing heat transfer correlations reported could not been well applied for various internally-ribbed tubes with large deviation between prediction results and experimental values, because rib geometry had a great influence on heat transfer of internally-ribbed tubes. On the basis of experimental data collected from open literature for internally-ribbed tubes, a new general calculation correlation of heat transfer coefficient for SCW was developed for various internally-ribbed tubes by combining an optimized empirical correlation for vertically-upward smooth tubes and four dimensionless numbers of rib geometry. The results show that the calculated values of the new present correlation is in reasonable agreement with available experimental data collected. Moreover, the new correlation was verified well by experiment data of two new-type internally-ribbed tubes performed beyond the above experimental database.

Author(s):  
Hakim Maloufi ◽  
Hanqing Xie ◽  
Andrew Zopf ◽  
William Anderson ◽  
Christian Langevin ◽  
...  

Currently, there is a number of Generation-IV SuperCritical Water-cooled nuclear-Reactor (SCWR) concepts under development worldwide. These high temperature and pressure reactors will have significantly higher operating parameters compared to those of current water-cooled nuclear-power reactors (i.e., “steam” pressures of about 25 MPa and “steam” outlet temperatures up to 625 °C). Additionally, SCWRs will have a simplified flow circuit in which steam generators, steam dryers, steam separators, etc. will be eliminated, as the steam will be flowing directly to a steam turbine. In support of developing SCWRs studies are being conducted on heat transfer at SuperCritical Pressures (SCPs). Currently, there are very few experimental datasets for heat transfer at SCPs in power-reactor fuel bundles to a coolant (water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations developed with bare-tube data can be used as a conservative approach. Selected empirical heat-transfer correlations, based on experimentally obtained datasets, have been put forward to calculate Heat Transfer Coefficients (HTCs) in forced convective in various fluids, including water at SCPs. The Mokry et al. correlation (2011) has shown a good fit for experimental data at supercritical conditions within a wide range of operating conditions in Normal and Improved Heat-Transfer (NHT and IHT) regimes. However, it is known that a Deteriorated Heat-Transfer (DHT) regime appears in bare tubes earlier than that in bundle flow geometries. Therefore, it is important to know if bare-tube heat-transfer correlations for SCW can predict HTCs at heat fluxes beyond those defined as starting of DHT regime in bare tubes. The Mokry et al. (2011) correlation fits the best SCW experimental data for HTCs and inner wall temperature for bare tubes at SCPs within the NHT and IHT regimes. However, this correlation might have problems with convergence of iterations at heat fluxes above 1000 kW/m2.


Author(s):  
Amjad Farah ◽  
Krysten King ◽  
Sahil Gupta ◽  
Sarah Mokry ◽  
Wargha Peiman ◽  
...  

This paper presents an extensive study of heat-transfer correlations applicable to supercritical-water flow in vertical bare tubes. A comprehensive dataset was collected from 33 papers by 27 authors, including more than 125 graphs and wide ranges of parameters. The parameters ranges were as follows: pressures 22.5–34.5 MPa, inlet temperatures 85–350°C, mass fluxes 250–3400 kg/m2s, heat fluxes 75–5,400 kW/m2), tube heated lengths 0.6–27.4 m, and tube inside diameters 2–36 mm. This combined dataset was then investigated and analyzed. Heat Transfer Coefficients (HTCs) and wall temperatures were calculated using various existing correlations and compared to the corresponding experimental results. Three correlations were used in this comparison: Bishop et al., Mokry et al. and modified Swenson et al. The main objective of this study was to select the best supercritical-water bare-tube correlation for HTC calculations in: 1) fuel bundles of SuperCritical Water-cooled Reactors (SCWRs) as a preliminary and conservative approach; 2) heat exchangers in case of indirect-cycle SCW Nuclear Power Plants (NPPs); and 3) heat exchangers in case of hydrogen co-generation at SCW NPPs from SCW side. From the beginning, all these three correlations were compared to the Kirillov et al. vertical bare-tube dataset. However, this dataset has a limited range of operating conditions in terms of a pressure (only one pressure value of 24 MPa) and one inside diameter (only 10 mm). Therefore, these correlations were compared with other datasets, which have a much wider range of operating conditions. The comparison showed that in most cases, the Bishop et al. correlation deviates significantly from the experimental data within the pseudocritical region and actually, underestimates the temperature at most times. On the other hand, the Mokry et al. and modified Swenson et al. correlations showed a relatively better fit within the most operating conditions. In general, the modified Swenson et al. correlation showed slightly better fit with the experimental data than other two correlations.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
N. Ablanque ◽  
J. Rigola ◽  
C. Oliet ◽  
J. Castro

The aim of this work is to present a critical examination of both the available experimental data and the performance of the available heat transfer correlations for oil-free ammonia horizontal in-tube boiling at fin-and-tube-type air-to-refrigerant liquid overfeed evaporation conditions. First, a selection and comparison of the experimental database found in the open literature at the mentioned working conditions is presented. Subsequently, after a short description of the most relevant heat transfer correlations, and in accordance with the selected data, a detailed analysis of the performance of each correlation is carried out. Results show an important divergence between the experimental data sets and conclude that the presently available correlations show considerable discrepancies in heat transfer coefficients within the selected conditions.


Author(s):  
J. Samuel ◽  
G. Lerchl ◽  
G. D. Harvel ◽  
I. Pioro

SuperCritical Water-cooled Reactors (SCWRs) are one of six Generation-IV nuclear-reactor concepts. They are expected to have high thermal efficiencies within the range of 45–50% owing to the reactor’s high pressures and outlet temperatures. Efforts have been made to study the supercritical phenomena both analytically and experimentally. However, codes that have been used to study the phenomena analytically have not been validated for supercritical water. The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is used for analysis of anticipated and abnormal plant transients, including safety analysis of Light Water Reactors (LWRs) and Russian Graphite-Moderated High Power Channel-type Reactors (RBMKs). The range of applicability of ATHLET has been extended to supercritical water by updating the fluid- and transport-properties packages, thus enabling a transition from subcritical to supercritical fluid states. This extension needs to be validated using experimental data. In this work, the applicability of ATHLET code to predict supercritical-water behaviour in various heat-transfer conditions is assessed. Several well-known heat-transfer correlations for supercritical fluids are added to the code and applied for the first time in ATHLET simulations of experiments. A numerical model in ATHLET is created to represent an experimental test section and results for the heat transfer coefficient, bulk fluid temperature, and the tube inside-wall temperature are compared with the experimental data. The results from the ATHLET simulations are promising in the Normal and Enhanced Heat-Transfer Regimes. However, important phenomena such as Deteriorated Heat Transfer are currently not accurately predicted. While ATHLET can be used to develop preliminary design solutions for SCWRs, a significant effort in analysis of experimental work is required to make further advancements in the use of ATHLET for SCW applications.


Author(s):  
V.V. Gorskiy ◽  
A.G. Loktionova

In order to compute the intensity of laminar-turbulent heat transfer, algebraic or differential models are commonly used, which are designed to compute the contribution of turbulent pulsations to the transfer properties of the gas. This, in turn, dictates the necessity of validating these semi-empirical models against experimental data obtained under conditions simulating the gas dynamics inherent to the phenomenon as observed in practice. The gas dynamic patterns observed during gradient flow around fragments of aircraft structure (such as a sphere or a cylinder) differs qualitatively from the patterns revealed by the flow around the lateral surfaces of these fragments, which necessitates using various semi-empirical approaches in this case, followed by mandatory validation against the results of respective experimental studies. In recent years, there appeared scientific publications dealing with modifying one of the algebraic models designed to compute the contribution of turbulent pulsations in the boundary layer to the transfer properties of the gas; this was accomplished by making use of experimental data obtained for a hemisphere at extremely high Reynolds numbers. The paper proposes a similar modification of the same turbulence model, based on fitting a wide range of experimental data obtained for lateral surfaces of spherically blunted cones. As a result of the investigations conducted, we stated a method for computing laminar-to-turbulent heat transfer over the entire surface of a blunted cone; the accuracy of the method is acceptable in terms of most practical applications. We show that the computational method presented is characterised by minimum error as compared to the most widely spread methods for solving this problem


1970 ◽  
Vol 92 (3) ◽  
pp. 345-350 ◽  
Author(s):  
E. S. Nowak ◽  
A. K. Konanur

Heat transfer to supercritical water (at 3400 psia in the pseudocritical region) by stable laminar free convection from an isothermal, vertical flat plate was analytically investigated. The actual variations with temperature of all or some of the thermophysical properties of supercritical water were taken into consideration. Fair agreement was found between the analytical values of this paper and existing experimental data.


Author(s):  
Krysten King ◽  
Amjad Farah ◽  
Sahil Gupta ◽  
Sarah Mokry ◽  
Igor Pioro

Many heat-transfer correlations exist for bare tubes cooled with SuperCritical Water (SCW). However, there is very few correlations that describe SCW heat transfer in bundles. Due to the lack of extensive data on bundles, a limited dataset on heat transfer in a SCW-cooled bundle was studied and analyzed using existing bare-tube correlations to find the best-fit correlation. This dataset was obtained by Razumovskiy et al. (National Technical University of Ukraine “KPI”) in SCW flowing upward in a vertical annular channel (1-rod channel) and tight 3-rod bundle consisting of tubes of 5.2-mm outside diameter and 485-mm heated length. The heat-transfer data were obtained at pressures of 22.5, 24.5, and 27.5 MPa, mass flux within a range from 800 to 3000 kg/m2s, inlet temperature from 125 to 352°C, outlet temperature up to 372°C and heat flux up to 4.6 MW/m2. The objective of this study is to compare bare-tube SCW heat-transfer correlations with the data on 1- and 3-rod bundles. This work is in support of SuperCritical Water-cooled Reactors (SCWRs) as one of the six concepts of Generation-IV nuclear systems. SCWRs will operate at pressures of ∼25MPa and inlet temperatures of 350°C.


Sign in / Sign up

Export Citation Format

Share Document