Comparative Analysis of High Void Fraction Regimes Using an Averaging Euler-Euler Multi-Fluid Approach and a Generalized Two-Phase Flow (GENTOP) Concept

Author(s):  
Gustavo Montoya ◽  
Emilio Baglietto ◽  
Dirk Lucas ◽  
Eckhard Krepper ◽  
Thomas Hoehne

Complex multiphase gas-liquid flows, including boiling, are usually encountered in safety related nuclear applications. For CFD purposes, modeling the transition from low to high void fraction regimes represents a non-trivial challenge due to the increasing complexity of its interface. For example, churn-turbulent and slug flows, which are typically encountered for these gas volume fraction ranges, are dominated by highly deformable bubbles. Multiphase CFD has been so far relying on an averaged Euler-Euler simulation approach to model a wide range of two-phase applications. While this methodology has shown to date demonstrated reasonable results (Montoya et al., 2013), it is evidently highly dependable on the accuracy and validity of the mechanistic models for interfacial forces, which are necessary to recover information lost during the averaging process. Unfortunately existing closures, which have been derived from experimental as well as DNS data, are hardly applicable to high void fraction highly-deformable gas structures. An alternative approach for representing the physics behind the high void fraction phenomena, is to consider a multi-scale method. Based on the structure of the gas-liquid interfaces, different gaseous morphologies should be described by different CFD approaches, such as interface tracking methods for larger than the grid size interfacial-scales, or the averaged Euler-Euler approach for smaller than grid size scales, such as bubbly or droplet flow. A novel concept for considering flow regimes where both, dispersed and continuous interfacial structures, could occur has been developed in the past (Hänsch et al., 2012), and has been further advanced and validated for pipe flows under high void fraction regimes (Montoya et al., 2014) and other relevant cases, such as the dam-break with an obstacle (Hänsch et al., 2013). Still, various short-comings have been shown in this approach associated mostly to the descriptive models utilized to obtain the continuous gas morphology from within the averaged Eulerian simulations. This paper presents improvements on both concepts as well as direct comparison between the two approaches, based on newly obtained experimental data. Both models are based on the bubble populations balance approach known as the inhomogeneous MUltiple SIze Group or MUSIG (Krepper et al., 2008) in order to define an adequate number of bubble size groups with its own velocity fields. The numerical calculations have been performed with the commercially available ANSYS CFX 14.5 software, and the results have been validated using experimental data from the MT-Loop and TOPFLOW facilities from the Helmholtz-Zentrum Dresden-Rossendorf in Germany (Prasser et al., 2007).

Author(s):  
Huiying Li ◽  
Sergio A. Vasquez

The present work concerns the development of an advanced numerical approach to simulate steady and unsteady compressible multiphase flows in the CFD solver FLUENT. Compressible multiphase flows can be simulated under the framework of either the multiphase Mixture/VOF or the Eulerian multifluid model. The governing equations solved are the mixture (Mixture or VOF model) or phase (Eulerian multifluid model) momentum, energy, species transport equations and phase volume fraction equations. Turbulence effects are accounted for using a range of multiphase turbulence models. For the compressible multiphase model, it assumes that only one phase is a compressible gas/gaseous mixture with multiple species. In gas-liquid flows, all the liquid phases can be compressible /incompressible liquid, while in gas-solid flows the solid phase can be treated as a granular flow. To ensure numerical stability and obtain physical solutions, the absolute pressure is limited in a way to satisfy the constraints for both incompressible and compressible flows that may exist in different regions. The compressible effects are taken into account by adding extra terms related to sound speed and phase volume fractions in both the phase volume fraction and the pressure-correction equations. For flow conditions at inlets and exits, only pressure and mass-flow-rate boundaries are applicable. The mixture Mach numbers are defined and used to determine the subsonic or supersonic flows and thermal boundary conditions. The compressible multiphase model have been successfully used to simulate steady and unsteady, sub- and super-sonic compressible multiphase flows in a wide range of 2D and 3D multiphase systems. The examples presented in the paper include: (1). Gas-liquid separation in a vertical cylindrical container; (2). Transient pressure variations in compressible liquid and gas-liquid flows of water hammers; (3). Sub- and super-sonic gas-liquid two-phase flows in a nozzle; (4). Cavitating and ventilated super-cavitating flows; and (5). 3D gas-liquid flows in a three-stream injector. The solver robustness and convergence performance will be discussed. The solutions will be compared with available experimental data or numerical solutions. Emphasis will be focused on the solver performances on simulations of compressible multiphase flows. Overall, the results obtained from the present compressible multiphase model are in line with analytical/CFD solutions or available experimental data. The numerical approach is reasonably fast and robust, and suitable for practical compressible multiphase applications.


2012 ◽  
Vol 152-154 ◽  
pp. 1221-1226
Author(s):  
H.A.M. Hasan Abbas

Multiphase flows, where two or even three fluids flow simultaneously in a pipe are becoming increasingly important in industry. In order to measure the flow rate of gas-water two phase flows accurately, the void fraction (gas volume fraction) in two phase flows must be precisely measured. The differential pressure technique has proven attractive in the measurement of volume fraction. This paper presents the theoretical and experimental study of the void fraction measurement in bubbly gas water two phase flows using differential pressure technique (the flow density meter).


Author(s):  
Hafez Bahrami ◽  
Amir Faghri

A numerical study is presented to investigate the turbulent, two-phase, steady state, isothermal, bubbly flow characteristic in the anode channel of a passive, tubular direct methanol fuel cell (DMFC) in order to accurately predict the gas volume fraction distribution along the channel. Accumulation of carbon dioxide gas bubbles at the channel’s wall hinders the diffusion of the fuel from the channel to the catalyst layer. The conservation governing equations of the mass and momentum for both the continuous (methanol and water solution) and dispersed (CO2 bubbles) phases in the bubbly regime are solved using the multi-fluid technique. Turbulence in the liquid phase is formulated by employing the classical, two-equation k–ε model. Due to the lack of experimental data regarding the gas volume fraction in the anode channel of DMFCs, the proposed model was initially applied to the bubble plum in a cylindrical liquid bath in which air is injected into the water from a nozzle located at the bottom-center of the bath. The results are compared with the existing experimental data in the literature for the gas volume fraction and the liquid velocity in the bath. Finally, the model is successfully extended to the anode channel of a tubular DMFC operating passively in the vertical orientation in which the CO2 gas bubbles are injected through the wall. The rate of gas injection depends on the cell current density which is assumed to be uniform along the anode catalyst layer and the channel’s wall. It is found that the gas volume fraction significantly changes along the channel from a large value at the bottom of the channel to a lower value at the top. The flow field inside the channel is also investigated for different cell current densities.


2017 ◽  
Vol 37 (4) ◽  
pp. 238-246
Author(s):  
Uri Breiman ◽  
Jacob Aboudi ◽  
Rami Haj-Ali

The compressive strength of unidirectional composites is strongly influenced by the elastic and strength properties of the fiber and matrix phases, as well as by the local geometrical properties, such as fiber volume fraction, misalignment, and waviness. In the present investigation, two microbuckling criteria are proposed and examined against a large volume of measured data of unidirectional composites taken from the literature. The first criterion is based on the compressive strength formulation using the buckling of Timoshenko’s beam. It contains a single parameter that can be determined according to the best fit to experimental data for various types of polymeric matrix composites. The second criterion is based on buckling-wave propagation analogy using the solution of an eigenvalue problem. Both criteria provide closed-form expressions for the compressive strength of unidirectional composites. We propose modifications of the two criteria by a fitting approach, for a wide range of fiber volume fractions, applied to four classes of unidirectional composite systems. Furthermore, a normalized form of the two models is presented after calibration in order to compare their prediction against experimental data for each of the material systems. The new modified criteria are shown to give a good match to a wide range of unidirectional composite systems. They can be employed as practical compression failure criteria in the analysis and design of laminated structures.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
W. G. Sim ◽  
Njuki W. Mureithi

An approximate analytical model, to predict the drag coefficient on a cylinder and the two-phase Euler number for upward two-phase cross-flow through horizontal bundles, has been developed. To verify the model, two sets of experiments were performed with an air–water mixture for a range of pitch mass fluxes and void fractions. The experiments were undertaken using a rotated triangular (RT) array of cylinders having a pitch-to-diameter ratio of 1.5 and cylinder diameter 38 mm. The void fraction model proposed by Feenstra et al. was used to estimate the void fraction of the flow within the tube bundle. An important variable for drag coefficient estimation is the two-phase friction multiplier. A new drag coefficient model has been developed, based on the single-phase flow Euler number formulation proposed by Zukauskas et al. and the two-phase friction multiplier in duct flow formulated by various researchers. The present model is developed considering the Euler number formulation by Zukauskas et al. as well as existing two-phase friction multiplier models. It is found that Marchaterre's model for two-phase friction multiplier is applicable to air–water mixtures. The analytical results agree reasonably well with experimental drag coefficients and Euler numbers in air–water mixtures for a sufficiently wide range of pitch mass fluxes and qualities. This model will allow researchers to provide analytical estimates of the drag coefficient, which is related to two-phase damping.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Diego N. Venturi ◽  
Waldir P. Martignoni ◽  
Dirceu Noriler ◽  
Henry F. Meier

Two-phase flows across tube bundles are very commonly found in industrial heat exchange equipment such as shell and tube heat exchangers. However, recent studies published in the literature are generally performed on devices where the flow crosses the tube bundle in only a vertical or horizontal direction, lacking geometrical fidelity with industrial models, and the majority of them use air and water as the working fluids. Also, currently, experimental approaches and simulations are based on very simplified models. This paper reports the simulation of a laboratory full-scale tube bundle with a combination of vertical and horizontal flows and with two different baffle configurations. Also, it presents a similarity analysis to evaluate the influence of changing the fluids to hydrogen and diesel in the operational conditions of the hydrotreating. The volume of fluid (VOF) approach is used as the interface phenomena are very important. The air/water simulations show good agreement with classical correlations and are able to show the stratified behavior of the flow in the horizontal regions and the intermittent flow in the vertical regions. Also, the two baffle configurations are compared in terms of volume fraction and streamlines. When dealing with hydrogen/diesel flow using correlations and maps made for air/water, superficial velocity is recommended as similarity variable when a better prediction of the pressure drop is needed, and the modified superficial velocity is recommended for prediction of the volume-average void fraction and the outlet superficial void fraction.


Author(s):  
W. G. Sim

An approximate analytical model, to predict the two-phase damping for upward cross-flow through horizontal bundles, has been developed. This model will allow researches to provide analytical estimates of the damping ratios. The existing semiempirical approach by Pettigrew and Taylor (2003) was approximated by taking the lower envelope of the damping data. To estimate the void fraction for the cross-flow, the void fraction model proposed by Feenstra etc (2000) is utilized. The development of the present damping model stemmed from the two-phase multiplier of pressure loss and the momentum flux of the two-phase flow. The important variables on the damping are identified. The results of the present model agree well with experimental damping ratios in air-mixtures for a sufficiently wide range of pitch mass ratio, quality and p/d ratios. It has also shown predictive capability for steam-water mixtures and Freon 11.


Sign in / Sign up

Export Citation Format

Share Document