Feasibility Assessment of Air-Cooling System As an Ultimate Heat Sink of the ATOM System

Author(s):  
Doyoung Shin ◽  
Gwang Hyeok Seo ◽  
Min Wook Na ◽  
Sung Joong Kim ◽  
Yonghee Kim ◽  
...  

Nowadays Small Modular Reactors (SMRs) have been receiving considerable attentions worldwide for potential advantages of an excellent flexibility for siting, low capital investment, and advanced safety. In Korea, a new research project has launched for the development of a conceptual design of a further advanced SMR which aims for a naturally-safe and autonomous operation, so called Autonomous Transportable On-demand reactor Module (ATOM). Major design objectives of the ATOM system are focused on the soluble boron-free (SBF) primary coolant system which enables the SMR to operate automatically in a load following mode. For the secondary system, the SCO2 power conversion cycle with air-cooling system as a final heat sink is being considered. The air-cooling system is expected to show flexible response even to extreme environmental conditions, such as a desert where utilization of cooling water is limited. The objective of this study is a feasibility assessment for applying the air-cooling system as a final heat sink of the ATOM by means of experimental work. As a 1st phase of the ATOM development, we first conducted the experiments using a typically considered primary coolant, water-steam, to verify that air flow has enough cooling capability to remove developed heat which the coolant carries. An Integrated Condensation Loop with Air-cooling System (ICLASS) experimental facility with three pressure boundaries (Steam, coolant, and air) was established. The cooling capability of the air-cooling system was evaluated by varying steam mass flow rate, coolant flow rate, and air environment temperature as experiment variables. Overall heat transfer rate by condensation was compared with numerical simulations of a 1D thermal-hydraulics analysis code, using the MARS model of the ICLASS facility.

2020 ◽  
Vol 197 ◽  
pp. 06003
Author(s):  
Maria Faruoli ◽  
Annarita Viggiano ◽  
Paolo Caso ◽  
Vinicio Magi

It is well known that spark ignition internal combustion engines for aeronautical applications operate within a specific temperature range to avoid structural damages, detonations and loss of efficiency of the combustion process. An accurate assessment of the cooling system performance is a crucial aspect in order to guarantee broad operating conditions of the engine. In this framework, the use of a Conjugate Heat Transfer method is a proper choice, since it allows to estimate both the heat fluxes between the engine walls and the cooling air and the temperature distribution along the outer wall surfaces of the engine, and to perform parametric analyses by varying the engine operating conditions. In this work, the air-cooling system of a 4-cylinder spark ignition engine, designed by CMD Engine Company for aeronautical applications, is analysed in order to evaluate the amount of the air mass flow rate to guarantee the heat transfer under full load operating conditions. A preliminary validation of the model is performed by comparing the results with available experimental data. A parametric study is also performed to assess the influence of the controlling parameters on the cooling system efficiency. This study is carried out by varying the inlet air mass flow rate from 1.0 kg/s to 1.5 kg/s and the temperature of the inner wall surfaces of the engine combustion chambers from 390 K to 430 K.


Author(s):  
Kazuaki Yazawa ◽  
Gary L. Solbrekken ◽  
Avram Bar-Cohen

A compact, energy efficient heat sink design methodology is presented for shrouded, parallel plate fins in laminar flow. The analytic model accounts for the sensible temperature rise of the air flowing between fins, convective heat transfer to the flowing stream, and conduction in the fins. To evaluate the efficiency of the air cooling system, consideration is also given to the determination of the fan pumping power. This paper focuses on the optimization of the heat sink-fan combination for energy efficiency, subject to volumetric constraints. The design optimum is found by matching the most efficient operating point of the fan with the corresponding optimum fin geometry. A series of parametric studies was completed to identify the sensitivity of the cooling solution to parametric variations. This numerically validated model has been used to visualize the parametric impact of dealing with “real world” manufacturing limitation in the development of thermal packaging solutions for notebook computers and other electronic products.


2018 ◽  
Vol 12 (4) ◽  
pp. 4117-4126
Author(s):  
P. Rakkwamsuk ◽  
P. Paromupatham ◽  
K. Sathapornprasath ◽  
C. Lertsatitthanakorn ◽  
S. Soponronnarit

A thermoelectric (TE) air-cooling system for dehumidifying indoor air in a building was investigated. The system was composed of 4 TE modules. The cold sides of the TE modules were fixed to an aluminum heat sink to remove moisture in the air of a test chamber of 1 m3 volume, while a heat sink with circulating cooling water at the hot sides of the TE modules was used for heat release. The effects of input electric current to the TE modules and air flow rate through the heat sink were experimentally determined. The system’s performance was evaluated using dehumidification effectiveness and coefficient of performance (COP). A suitable condition occurred at 18.5 A of current flow and 240 W of power being supplied to the TE modules with a corresponding cooling capacity of 149.5 W, which gave a dehumidification effectiveness of 0.62. Therefore, it is anticipated the proposed TE dehumidifier concept will contribute to the air conditioning system’s reduction of room humidity. 


Author(s):  
Akira Murata ◽  
Hiroshi Saito ◽  
Yoji Okita

The More Electric Aircraft (MEA) is a system architecture concept for the aircraft that reduces fuel consumption and environmental load while improving safety, reliability, and maintainability. MEA architecture replaces some of the conventional hydraulic and/or mechanical control system with electric motor-driven system, integrates system power management into the aircraft/engine controls, and optimizes the aircraft geometry by flexibly arranging the accessory devices. The primary challenge to realize the MEA concept is how to manage the heat from these additional power electronic devices. The authors’ group proposed novel cooling system, the Autonomous Air-Cooling System (AACS) which cools the power electronics of the motor devices distributed in the aircraft. In AACS, each power electronic device (e.g. motor controller) is air-cooled by heat sinks connected to compact blowers. This system is very simple and efficient since it re-uses the cabin air and needs no additional coolant. One of the key technologies which realize AACS is an efficient heat sink. In this study, at first the performance evaluation targeting a single-aisle 180-seater aircraft was performed. In the analysis, a plate-fin heat sink was adopted, and the pressure loss and heat transfer was estimated by using empirical correlations. In the analysis, the value of heat generation was assumed from power demand for each operation condition, and the required mass flow rate of cooling air was calculated so as for the enclosure temperature of the power electronics to be 80°C which was the allowable maximum temperature of the motor controller. The effect of the fin geometry on the cooling performance was also examined by varying the geometric parameters (fin height, thickness, and spacing). In order to further enhance the cooling performance without increasing the pressure loss, the water-mist injection to the cooling air flow was adopted and its effect was analytically confirmed. In addition, the effectiveness of the water-mist injection on the cooling performance was verified by performing experiments for a plate-fin heat sink manufactured by a wire electric discharge method.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3753
Author(s):  
Grzegorz Czerwiński ◽  
Jerzy Wołoszyn

Air cooling systems are currently the most popular and least expensive solutions to maintain a safe temperature in electronic devices. Heat sinks have been widely used in this area, allowing for an increase in the effective heat transfer surface area. The main objective of this study was to optimise the shape of the heat sink geometric model using the Adjoint Solver technique. The optimised shape in the context of minimal temperature value behind the heat sink is proposed. The effect of radiation and trapezoidal fin shape on the maximum temperature in the cooling system is also investigated. Simulation studies were performed in Ansys Fluent software using the Reynolds—averaged Navier–Stokes technique. As a result of the simulation, it turned out that not taking into account the radiation leads to an overestimation of temperatures in the system—even by 14 ∘C. It was found that as the angle and height of the fins increases, the temperature value behind the heat sink decreases and the heat source temperature increases. The best design in the context of minimal temperature value behind the heat sink from all analysed cases is obtained for heat sink with deformed fins according to iteration 14. The temperature reduction behind the heat sink by as much as 25 ∘C, with minor changes in heat source temperature, has been achieved.


Author(s):  
Li Lin ◽  
Jing Ren ◽  
Hongde Jiang ◽  
Peter Childs

In some cases, the mass flow rate needed to prevent ingress through rim seals in turbine is smaller than that entrained by a free disk. In order to obtain the heat transfer features of the rotor-stator system at such a small mass flow rate, a combined computational and theoretical study has been carried out. It is found that the average Nusselt number (Nuav) on the rotor drops approximately linearly down to zero with decreasing turbulent flow parameter (λt) when λt is smaller than λt,c (λt,c < λt,fd), while Nuav almost keeps constant when λt is larger than λt,c. A correlation between Nuav and λt has been developed, which is expected to be useful in determining disk temperatures in the preliminary design of an internal air cooling system. The Eckert number, which can express the relationship between heat generated by windage and heat conducted through disk, turns out to be an important nondimensional number in describing the heat transfer features of such rotor-stator systems. Moreover, the effect of rotational speed on heat transfer when λt,c<λt<λt,fd has been studied, further identifying the significance of the Eckert number.


Volume 1 ◽  
2004 ◽  
Author(s):  
Mohammad Ameri ◽  
Hamid Nabati ◽  
Alireza Keshtgar

Gas turbines are almost constant volume machines at a specific rotating speed, i.e., air intake is limited to a nearly fixed volume of air regardless of ambient air conditions. As air temperature rises, its density falls. Thus, although the volumetric flow rate remains constant, the mass flow rate is reduced as air temperature rises. Power output is also reduced as air temperature rises because power output is proportional to mass flow rate. This power output reduction is from 0.5% to 0.9% of the ISO output power for every 1°C rise in the ambient temperature. The solution of this problem is very important because the peak demand season also happens in the summer. One of the useful methods to overcome this problem is to apply the fog inlet air cooling system for the gas turbines. In this paper the Rey Power Plant site climate conditions in the summer have been studied. The design conditions regarding the dry bulb temperature and relative humidity have been selected. The different inlet air cooling systems have been studied and the Fog system has been chosen. The economical study has shown that this system is very cheap in comparison with the installation of the new gas turbines. The capital cost is estimated to be 40 $/KW. The pay back period is around 1.5 year. The testing of this system has shown that the average power capacity of the power plant is increased by 19 MW and prevented the installation of a new gas turbine.


2015 ◽  
Vol 60 (3) ◽  
pp. 715-728
Author(s):  
Bernard Nowak ◽  
Rafał Łuczak

Abstract The article discusses the improvement of thermal working conditions in underground mine workings, using local refrigeration systems. It considers the efficiency of air cooling with direct action air compression refrigerator of the TS-300B type. As a result of a failure to meet the required operating conditions of the aforementioned air cooling system, frequently there are discrepancies between the predicted (and thus the expected) effects of its work and the reality. Therefore, to improve the operating efficiency of this system, in terms of effective use of the evaporator cooling capacity, quality criteria were developed, which are easy in practical application. They were obtained in the form of statistical models, describing the effect of independent variables, i.e. the parameters of the inlet air to the evaporator (temperature, humidity and volumetric flow rate), as well as the parameters of the water cooling the condenser (temperature and volumetric flow rate), on the thermal power of air cooler, treated as the dependent variable. Statistical equations describing the performance of the analyzed air cooling system were determined, based on the linear and nonlinear multiple regression. The obtained functions were modified by changing the values of the coefficients in the case of linear regression, and of the coefficients and exponents in the case of non-linear regression, with the independent variables. As a result, functions were obtained, which were more convenient in practical applications. Using classical statistics methods, the quality of fitting the regression function to the experimental data was evaluated. Also, the values of the evaporator thermal power of the refrigerator, which were obtained on the basis of the measured air parameters, were compared with the calculated ones, by using the obtained regression functions. These statistical models were built on the basis of the results of measurements in different operating conditions of the TS-300B refrigerator, both on the test stand in the manufacturer’s laboratory and in the workings of underground mines. The evaluation of the measurement data distributions, as well as an analysis of the basic descriptive statistics of the mentioned variables were carried out, determining their measures of central tendency, location, dispersion and asymmetry.


Sign in / Sign up

Export Citation Format

Share Document