heat sink temperature
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6090
Author(s):  
Steven Jackson ◽  
Eivind Brodal

Hydrogen used as an energy carrier can provide an important route to the decarbonization of energy supplies, but realizing this opportunity will require both significantly increased production and transportation capacity. One route to increased transportation capacity is the shipping of liquid hydrogen, but this requires an energy-intensive liquefaction step. Recent study work has shown that the energy required in this process can be reduced through the implementation of new and improved process designs, but since all low-temperature processes are affected by the available heat-sink temperature, local ambient conditions will also have an impact. The objective of this work is to identify how the energy consumption associated with hydrogen liquefaction varies with heat-sink temperature through the optimization of design parameters for a next-generation mixed refrigerant based hydrogen liquefaction process. The results show that energy consumption increases by around 20% across the cooling temperature range 5 to 50 °C. Considering just the range 20 to 30 °C, there is a 5% increase, illustrating the significant impact ambient temperature can have on energy consumption. The implications of this work are that the modelling of different liquified hydrogen based energy supply chains should take the impact of ambient temperature into account.


Author(s):  
Steven Jackson ◽  
Eivind Brodal

Hydrogen used as an energy carrier can provide an important route to the decarbonization of energy supplies. However, realizing this opportunity requires a significant increase in both production and transportation capacity. Part of the increase in transportation capacity could be provided by the shipping of liquid hydrogen, but this introduces an energy-intensive liquefaction step into the supply-chain. The energy required for liquefaction can be reduced by developing improved process designs, but since all low-temperature processes are affected by the available heat-sink temperature, local ambient conditions will also affect the energy penalty. This work studies how the energy consumption associated with liquefaction varies with heat-sink temperature through the optimization of design parameters for a typical next-generation hydrogen liquefaction process. The results show that energy consumption increases by around 20%, across the cooling temperature range 5 to 50 °C. Considering just the range 20 to 30 °C there is a 5% increase, illustrating the significant impact ambient temperature can have on energy consumption.


Author(s):  
Xiaotong Xi ◽  
Biao Yang ◽  
Jue Wang ◽  
Liubiao Chen ◽  
Junjie Wang

Abstract As a commonly used sub-Kelvin refrigeration technology, helium sorption coolers play an important role in space and ground applications. The adsorption characteristics of the porous material inside the sorption cooler at low temperature have a crucial influence on its performance. At present, the analysis and calculation of sorption coolers are mainly based on helium 4 (4He) as the working gas, and there is a lack of systematic research on the low-temperature adsorption characteristics of helium-3 (3He) and its coupling effect characteristics of temperature, pressure, and mass distribution in different components. In this paper, a molecular model of activated carbon that is similar to the actual structure was constructed, and the adsorption isobars and isosteric heat of 3He and 4He at 0.8–5 K were comparatively studied based on the grand canonical Monte Carlo (GCMC) method. Besides, the influence of adsorption characteristics of 3He and 4He on the condensation efficiency, the mass distribution after condensation equilibrium, and the self-cooling loss of the sorption cooler were analyzed. The results show that for the 3He sorption cooler, the main factor affecting the condensation efficiency is the adsorbed helium in the sorption pump, while for the 4He sorption cooler, it is the adsorbed helium and the gas in the dead volume. For both 3He and 4He sorption coolers, the condensation efficiency increases as the sorption pump temperature increases or the heat sink temperature decreases, while the self-cooling loss decreases as the heat sink temperature decreases or the operating temperature increases.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Volodymyr Baturkin ◽  
Vitali Feidelheimer ◽  
Kaname Sasaki ◽  
Eugen Mikulz ◽  
Tra-Mi Ho

Abstract Variable conductance heat pipes (VCHPs) are the main part of the MASCOT (mobile asteroid surface SCOuT) lander thermal control system (TCS). They provide variable conductivity by utilizing the heat transfer limitations. This allows the heat pipes to act as thermal switches without additional constructive elements, thus leveraging the simple and compact design of conventional heat pipes. Two cylindrical methanol–copper heat pipes with shell length of 0.482 m and 0.438 m and external diameter of 0.006 m, having copper discrete metal fiber wick and copper shell were constructed and verified in the temperature range between −75 and +60 °C. The purpose is to apply this design into the MASCOT TCS and to investigate the heat pipes' regulative characteristics and heat transfer limitations. VCHPs show a change of thermal resistivity from 70 K/W at a heat sink temperature of −60 °C, to 0.8 K/W at a heat sink temperature of +60 °C; with an obtained maximal heat transfer rate of 5 W and 16 W, respectively. It is found that the switching effect of the heat pipes is governed by the sonic velocity limitation, the saturation vapor pressure of the working fluid, and the maximal capillary pressure of the wick. The operation of the heat pipes as the part of the TCS has confirmed their variable thermal properties.


2018 ◽  
Vol 179 ◽  
pp. 01023
Author(s):  
Jian Yabin ◽  
Zhang Chunyuan ◽  
Wang jing ◽  
Lin Boyin ◽  
Wang Runze ◽  
...  

The heat sink temperature is often set in a semi-empirical way based on steady-state temperatures . As a result, the entrance parameters of the heat sink working fluid are often too conservative, and the rate of temperature rise is difficult to control. In this paper, transient thermal models for each component of the heat sink temperature regulation system are established. Then they are programmed into a dynamic simulation model by using Matlab/Simulink as the thermal control algorithm.It is shown that the model can accurately reflect the dynamic and steady state characteristics of the heat sink temperature regulation system, and can provide guidance for the selection of control strategies and working fluid parameters in the thermal vacuum test.


Sign in / Sign up

Export Citation Format

Share Document