Study on the Turbulent Mixed Convection Phenomena Inside the Air-Cooled RCCS Riser

Author(s):  
Dong-Ho Shin ◽  
Sin-Yeob Kim ◽  
Chan Soo Kim ◽  
Goon-Cherl Park ◽  
Hyoung Kyu Cho

High Temperature Gas cooled Reactor (HTGR) that is one of GEN-IV reactor types enhances its safety adopting a passive cooling system, Reactor Cavity Cooling System (RCCS). When the active cooling system for the reactor core in a HTGR doesn’t work, the decay heat from the reactor core is transferred to the reactor vessel and the concrete wall of the reactor cavity, which are cooled by the RCCS. The RCCS consists of the vertical rectangular ducts, called risers, surrounding reactor vessel at a certain distance and chimneys that are connected to risers. Risers receiving the decay heat from the reactor vessel, the air inside the riser is heated and flows up to the chimney which accelerates exhalation of the air to the external atmosphere. The RCCS performance depends on the heat transfer rate inside the riser ducts, but the turbulent mixed convection that may occur in the riser ducts can complicate the verification. In this study, an experimental facility had been constructed to investigate heat transfer phenomena inside a riser duct and experiments with various heat flux and flow rate conditions were carried out. The experimental results showed that the turbulent mixed convection occurred for certain experimental conditions in the riser duct, which leads to heat transfer deterioration. Therefore, a correlation was suggested to predict how much the heat transfer could decrease compared to the forced convection. Large eddy simulation was carried out for CFD analysis. The heat transfer coefficients from LES showed consistent results with the correlation. The unique velocity profile and secondary flow was observed when the heat transfer was deteriorated. This study will contribute to the evaluation of the RCCS performance.

Author(s):  
Thomas A. Kindred ◽  
Richard F. Wright

During a loss-of-coolant accident (LOCA) event the AP1000® passive safety features actuate to provide emergency core cooling (ECC) to the reactor core using passive features that do not rely on electrical power being available. The core makeup tanks (CMTs), and accumulators (ACCs) actuate to quench the fuel rods and refill the reactor vessel. After the CMTs and ACCs empty, the in-containment refueling water storage tank (IRWST) utilizing gravity injects a large volume of sub-cooled fluid into the reactor vessel. This floods the vessel and the lower region of containment (containment sump) initiating gravity induced long-term recirculation cooling. The discharge of high energy fluid during the blowdown, re-flood, and re-fill phases is assumed to condense on the colder structures inside the containment including the containment vessel shell. Heat is transferred through the shell to the film of water from the Passive Containment Cooling System (PCS) applied to the outside of the containment vessel shell. This results in evaporative heat transfer on the outside of the containment vessel. Due to the large heat transfer coefficients on the inside and outside of the shell the heat conduction through the shell is very important to the heat rejection capability of the PCS, and plays a large part in ensuring the containment vessel pressure is not exceeded during design basis events. The AP1000® containment vessel is forged from a high strength carbon steel alloy that is coated with an inorganic zinc coating which protects the containment vessel from corrosion during its design life. The coating acts as a sacrificial anodic layer which corrodes in lieu of corrosion of the substrate beneath it. The corrosion of the coating can potentially lead to degradation in thermal conductivity of the coating due to metallic oxides typically having a lower thermal conductivity than that of the non-oxidized state. A reduction in thermal conductivity of the protective coating will impact the overall heat transfer through the containment vessel during PCS operation. The purpose of this work is to develop a mechanistic model demonstrated against empirical validation for assessing the effects of oxidation on the thermal conductivity of the protective inorganic zinc coating (IOZ) on the AP1000® containment vessel.


Author(s):  
Yoshihisa Nishi ◽  
Nobuyuki Ueda ◽  
Izumi Kinoshita ◽  
Tomonari Koga ◽  
Satoshi Nishimura ◽  
...  

CRIEPI (Central Research Institute of Electric Power Industry) has been developing the 4S reactor (Super Safe, Small and Simple reactor) for application to dispersed energy supply and multipurpose use, with Toshiba Corporation [1,2,3,4]. Electrical output of the 4S reactor is from 10MW to 50MW, and burn-up reactivity loss is regulated by neutron reflectors. The reflector that surrounds the core is gradually lifted up to control the reactivity according to core burn-up. 30year core lifetime without refueling can be achieved with the 10MW 4S (4S-10M) reactor. All temperature feedback reactivity coefficients, including coolant void reactivity, of the 4S-10M are negative during the 30year lifetime. A neutron absorption rod is set at the center of the reactor core with the ultimate shutdown rod. The neutron absorption rod used during the former 14 years is moved to the upper part of the reactor core, and the operation is continued through the latter 16 years. The pressure loss of the reactor core is lower than 2kg/cm2 to enable effective utilization of the natural circulation force, and the average burn-up rate is 76GWD/t. To suppress the influence of the scale disadvantage, loop-type reactor design is one of the candidates for the 4S-10M. The size of the reactor vessel can be miniaturized by adopting the loop type design (4S-10ML). In the 4S-10ML design, integrated equipment which includes primary and secondary electromagnetic pumps (EMPs), an intermediate heat exchanger (IHX) and a steam generator (SG) is adopted and collocated by the reactor vessel. The decay heat removal systems of 4S-10ML consist of the reactor vessel air cooling system (RVACS) and SGACS (a similar system to the RVACS, with air cooling of the outside of the integrated equipment vessel). They are completely passive systems. To decrease the construction cost of the reactor building, a step mat structure and the horizontal aseismic structure are adopted. 4S-10ML has unique features in the cooling systems such as integrated equipment and two separate passive decay heat removal systems which operate at the same time. To evaluate the design feasibility, the transition analyses were executed by the CERES code developed by CRIEPI [5]. In this paper, the design concept of 4S-10ML, and the results of the plant transition analyses are described.


Author(s):  
Jun Su Park ◽  
Namgeon Yun ◽  
Hokyu Moon ◽  
Kyung Min Kim ◽  
Sin-Ho Kang ◽  
...  

This paper presents thermal analyses of the cooling system of a transition piece, which is one of the primary hot components in a gas turbine engine. The thermal analyses include heat transfer distributions induced by heat and fluid flow, temperature, and thermal stresses. The purpose of this study is to provide basic thermal and structural information on transition piece, to facilitate their maintenance and repair. The study is carried out primarily by numerical methods, using the commercial software, Fluent and ANSYS. First, the combustion field in a combustion liner with nine fuel nozzles is analyzed to determine the inlet conditions of a transition piece. Using the results of this analysis, pressure distributions inside a transition piece are calculated. The outside of the transition piece in a dump diffuser system is also analyzed. Information on the pressure differences is then used to obtain data on cooling channel flow (one of the methods for cooling a transition piece). The cooling channels have exit holes that function as film-cooling holes. Thermal and flow analyses are carried out on the inside of a film-cooled transition piece. The results are used to investigate the adjacent temperatures and wall heat transfer coefficients inside the transition piece. Overall temperature and thermal stress distributions of the transition piece are obtained. These results will provide a direction to improve thermal design of transition piece.


2005 ◽  
Author(s):  
H. K. Cho ◽  
D. U. Seo ◽  
M. O. Kim ◽  
G. C. Park

In the HTGR (High Temperature Gas Cooled Reactor), the Reactor Cavity Cooling System (RCCS) is equipped to remove the heat transferred from the reactor vessel to the structure of the containment. The function of the RCCS is to dissipate the heat from the reactor cavity during normal operation including shutdown. The system also removes the decay heat during the loss of forced convection (LOFC) accident. A new concept of the water pool type RCCS was proposed at Seoul National University. The system mainly consists of two parts, water pool located between the containment and reactor vessel and five trains of air cooling system installed in the water pool. In normal operations, the heat loss from the reactor vessel is transferred into the water pool via cavity and it is removed by the forced convection of air flowing through the cooling pipes. During the LOFC accident, the after heat is passively removed by the water tank without the forced convection of air and the RCCS water pool is designed to provide sufficient passive cooling capacity of the after heat removal for three days. In the present study, experiments and numerical calculations using CFX5.7 for the water pool and cooling pipe were performed to investigate the heat transfer characteristics and evaluate the heat transfer coefficient model of the MARS-GCR (Multi-dimensional Analysis of Reactor Safety for Gas Cooled Reactor Analysis) which was developed for the safety analysis of the gas cooled reactor. From the results of the experiments and CFX calculations, heat transfer coefficients inside the cooling pipe were calculated and those were used for the assessment for the heat transfer coefficient model of the MARS-GCR.


Author(s):  
F. Gori ◽  
F. De Nigris ◽  
E. Pippione ◽  
G. Scavarda

The paper describes a patented proposal to use jets of air in the cooling system of heavy trucks. Preliminary tests have been carried out, in the Heat Transfer Laboratory of the University of Rome “Tor Vergata”, to evaluate the heat transfer characteristics of a jet flow of air, impinging onto an externally finned cylinder. The cylinder is internally heated with an electric system. Thermocouples, located inside the cylinder, allow to measure the wall temperatures, in order to calculate the local and average convective heat transfer coefficients. A preliminary design of the practical apparatus, applied to heavy trucks, has been done in cooperation with Iveco. Nozzles are designed to be put after the fan of heavy trucks to converge air, in the form of jets, onto the tube where the charged air is flowing from the outlet of the turbo-compressor. The efficiency of the jet flow increases the cooling performances but, due to the high temperature at the outlet of the turbo-compressor, it may not be enough. The heat transfer cooling performances are enhanced if the tube to be cooled is externally finned. Some preliminary experiments have been carried out in a real scale bank test of an heavy truck engine at the Engineering Testing Laboratories Department of Iveco. Comparisons are done between the experiments and a simple theoretical model. Some conclusions are drawn about the cooling at different fluid dynamics conditions of the impinging jets.


Author(s):  
Shoji Takada ◽  
Shunki Yanagi ◽  
Kazuhiko Iigaki ◽  
Masanori Shinohara ◽  
Daisuke Tochio ◽  
...  

HTTR is a helium gas cooled graphite-moderated HTGR with the rated power 30 MWt and the maximum reactor outlet coolant temperature 950°C. The vessel cooling system (VCS), which is composed of thermal reflector plates, cooling panel composed of fins connected between adjacent water cooling tubes, removes decay heat from reactor core by heat transfer of thermal radiation, conduction and natural convection in case of loss of forced cooling (LOFC). The metallic supports are embedded in the biological shielding concrete to support the fins of VCS. To verify the inherent safety features of HTGR, the LOFC test is planned by using HTTR with the VCS inactive from an initial reactor power of 9 MWt under the condition of LOFC while the reactor shut-down system disabled. In this test, the temperature distribution in the biological shielding concrete is prospected locally higher around the support because of thermal conduction in the support. A 2-dimensional symmetrical model was improved to simulate the heat transfer to the concrete through the VCS support in addition to the heat transfer thermal radiation and natural convection. The model simulated the water cooling tubes setting horizontally at the same pitch with actual configuration. The numerical results were verified in comparison with the measured data acquired from the test, in which the RPV was heated up to around 110 °C without nuclear heating with the VCS inactive, to show that the temperature is locally high but kept sufficiently low around the support in the concrete due to sufficient thermal conductivity to the cold temperature region.


Author(s):  
Ibrahim Eryilmaz ◽  
Sinan Inanli ◽  
Baris Gumusel ◽  
Suha Toprak ◽  
Cengiz Camci

This paper presents the preliminary results of using artificial neural networks in the prediction of gas side convective heat transfer coefficients on a high pressure turbine blade. The artificial neural network approach which has three hidden layers was developed and trained by nine inputs and it generates one output. Input and output data were taken from an experimental research program performed at the von Karman Institute for Fluid Dynamics by Camci and Arts [5,6] and Camci [7]. Inlet total pressure, inlet total temperature, inlet turbulence intensity, inlet and exit Mach numbers, blade wall temperature, incidence angle, specific location of measurement and suction/pressure side specification of the blade were used as input parameters and calculated heat transfer coefficient around a rotor blade used as output. After the network is trained with experimental data, heat transfer coefficients are interpolated for similar experimental conditions and compared with both experimental measurements and CFD solutions. CFD analysis was carried out to validate the algorithm and to determine heat transfer coefficients for a closely related test case. Good agreement was obtained between CFD results and neural network predictions.


Author(s):  
Christian Egger ◽  
Jens von Wolfersdorf ◽  
Martin Schnieder

In this paper a transient method for measuring heat transfer coefficients in internal cooling systems using infrared thermography is applied. The experiments are performed with a two-pass internal cooling channel connected by a 180° bend. The leading edge and the trailing edge consist of trapezoidal and nearly rectangular cross sections, respectively, to achieve an engine-similar configuration. Within the channels rib arrangements are considered for heat transfer enhancement. The test model is made of metallic material. During the experiment the cooling channels are heated by the internal flow. The surface temperature response of the cooling channel walls is measured on the outer surface by infrared thermography. Additionally, fluid temperatures as well as fluid and solid properties are determined for the data analysis. The method for determining the distribution of internal heat transfer coefficients is based on a lumped capacitance approach which considers lateral conduction in the cooling system walls as well as natural convection and radiation heat transfer on the outer surface. Because of time-dependent effects a sensitivity analysis is performed to identify optimal time periods for data analysis. Results are compared with available literature data.


Author(s):  
E. Findeisen ◽  
B. Woerz ◽  
M. Wieler ◽  
P. Jeschke ◽  
M. Rabs

This paper presents two different numerical methods to predict the thermal load of a convection-cooled gas-turbine blade under realistic operating temperature conditions. The subject of the investigation is a gas-turbine rotor blade equipped with an academic convection-cooling system and investigated at a cascade test-rig. It consists of three cooling channels, which are connected outside the blade, so allowing cooling air temperature measurements. Both methods use FE models to obtain the temperature distribution of the solid blade. The difference between these methods lies in the generation of the heat transfer coefficients along the cooling channel walls which serve as a boundary condition for the FE model. One method, referred to as the FEM1D method, uses empirical one-dimensional correlations known from the available literature. The other method, the FEM2D method, uses three-dimensional CFD simulations to obtain two-dimensional heat transfer coefficient distributions. The numerical results are compared to each other as well as to experimental data, so that the benefits and limitations of each method can be shown and validated. Overall, this paper provides an evaluation of the different methods which are used to predict temperature distributions in convection-cooled gas-turbines with regard to accuracy, numerical cost and the limitations of each method. The temperature profiles obtained in all methods generally show good agreement with the experiments. However, the more detailed methods produce more accurate results by causing higher numerical costs.


Author(s):  
Sumit V. Prasad ◽  
A. K. Nayak

The present experimental investigation in a scaled facility of an Indian pressurized heavy water reactors (PHWRs) is focused on the heat transfer behavior from the calandria vessel (CV) to the calandria vault during a prolonged severe accident condition in the presence of decay heat. The transient heat transfer simulates the conditions from single phase to boiling in the calandria vault water, partial uncovery of the CV due to boil off of water in the vault, and refill of calandria vault. Molten borosilicate glass was used as the simulant due to its comparable heat transfer characteristics similar to prototypic material. About 60 kg of the molten material was poured into the test section at about 1100 °C. Decay heat in the melt pool was simulated by using high watt cartridge type heaters. The temperature distributions inside the molten pool across the CV wall thickness and vault water were measured for prolonged period which can be divided into various phases, viz., single phase natural convection heat transfer in calandria vault, boiling heat transfer in calandria vault, partial uncovery of CV, and refilling calandria vault. Experimental results showed that once the crust formed, the inner vessel temperature remained very low and vessel integrity maintained. Even boiling of calandria vault water and uncovery of CV had negligible effect on melt, CV, and vault water temperature. The heat transfer coefficients on outer vessel surface were obtained and compared with various conditions.


Sign in / Sign up

Export Citation Format

Share Document